Biết x+1/x = 3. Tính giá trị của A= x^2 + 1/x^2 - 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
x/x^2 + x + 1 = -2/3
<=> -2x^2 - 2x - 2 = 3x
<=> -2x^2 - 5x - 2 = 0
<=> -2(x^2 + 5/2x + 1) = 0
<=> x^2 + 5/2x + 1 = 0
<=> x^2 + 2x.5/4 + 25/16 - 9/16 = 0
<=> (x+5/4)^2 = 9/16
<=> x + 5/4 = 3/4 hoặc x + 5/4 = -3/4
<=> x = -1/2 hoặc x = -2
Sau đấy thay vào ( easy )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,A=\dfrac{x^2-x-2}{x^2-1}+\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(\Rightarrow A=\dfrac{x^2-x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-x-2x+x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-3x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x^2-2x-x+2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow A=\dfrac{x-2}{x+1}\)
\(b,A=\dfrac{3}{4}\\ \Rightarrow\dfrac{x-2}{x+1}=\dfrac{3}{4}\\ \Rightarrow4\left(x-2\right)=3\left(x+1\right)\\ \Rightarrow4x-8=3x+3\\ \Rightarrow4x-8-3x-3=0\\ \Rightarrow x-11=0\\ \Rightarrow x=11\)
\(c,\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Thay x=5 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{5-2}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)
Thay x=1 vào A ta có:
\(A=\dfrac{x-2}{x+1}=\dfrac{1-2}{1+1}=\dfrac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
$M=3.4.5+4.5.6+...+13.14.15$
$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$
$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$
$=-2.3.4.5+13.14.15.16=43560$
$M=43560:4=10890$
Bài 2:
a.
$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$
$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
$M=\frac{99}{100}:3=\frac{33}{100}$
![](https://rs.olm.vn/images/avt/0.png?1311)
d) \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)
\(\Leftrightarrow x-2< 0\) ( vì \(-1< 0\))
\(\Leftrightarrow x< 2\)
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`a)C=((2x^2+1)/(x^3-1)-1/(x-1)):(1-(x^2-2)/(x^2+x+1))`
`ĐK:x ne 1`
`C=((2x^2+1-x^2-x-1)/(x^3-1)):((x^2+x+1-x^2+2)/(x^2+x+1))`
`C=((x^2-x)/(x^3-1)):((x+3)/(x^2+x+1))`
`C=x/(x^2+x+1)*(x^2+x+1)/(x+3)`
`C=x/(x+3)`
`b)|1-x|+2=3(x+1)`
`<=>|1-x|+2=3x+3`
`<=>|1-x|=3x+1(x>=-1/3)`
`**1-x=3x+1`
`<=>4x=0<=>x=0(tmđk)`
`**x-1=3x+1`
`<=>2x=-2`
`<=>x=-1(l)`
Thay `x=0` vào C
`=>C=0`
`c)C in ZZ`
`=>x vdots x+3`
`=>x+3-3 vdots x+3`
`=>3 vdots x+3`
`=>x+3 in Ư(3)={+-1,+-3}`
`=>x in {-2,-4,0,-6}`
`d)|C|>C`
Mà `|C|>=0`
`=>C<0`
`<=>x/(x+3)<0`
Để 1 p/s `<=0` thì tử và mẫu trái dấu mà `x<x+3`
`=>` \(\begin{cases}x<0\\x+3>0\\\end{cases}\)
`<=>` \(\begin{cases}x>-3\\x<0\\\end{cases}\)
`<=>-3<x<0`
Theo giả thiết: \(x+\frac{1}{x}=3\left(x\ne0\right)\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)
\(\Rightarrow x^2+\frac{1}{x^2}=7\)
\(\Rightarrow A=x^2+\frac{1}{x^2}-\frac{1}{2}=7-\frac{1}{2}=\frac{13}{2}\)
Vậy \(A=\frac{13}{2}\)