Tìm x
A.(x-2)(2x+1)=8
B. (8-x)(4x+1)=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
\(a,\Leftrightarrow x^2+6x+9-x^2+3x+10=1\\ \Leftrightarrow9x=-18\Leftrightarrow x=-2\\ b,\Leftrightarrow4x^2-4x+1-4x^2+17x+15=3\\ \Leftrightarrow13x=-13\Leftrightarrow x=-1\\ c,\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\\ d,\Leftrightarrow2x\left(3x+5\right)-6\left(3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)
a) \(\dfrac{2}{5}\cdot x=\dfrac{1}{2}+\dfrac{6}{8}\)
\(\dfrac{2}{5}\cdot x=\dfrac{5}{4}\)
\(x=\dfrac{5}{4}\div\dfrac{2}{5}\)
\(x=\dfrac{25}{8}\)
b) \(\dfrac{20}{7}-x=\dfrac{19}{7}\div\dfrac{3}{2}\)
\(\dfrac{20}{7}-x=\dfrac{19}{7}\cdot\dfrac{2}{3}\)
\(\dfrac{20}{7}-x=\dfrac{38}{21}\)
\(x=\dfrac{20}{7}-\dfrac{28}{21}\)
\(x=\dfrac{22}{21}\)
b: \(5x^2+3x-2-4x^2+x+5=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
a) \(\Rightarrow x^8-2x^4-8=0\Rightarrow\left(x^4-4\right)\left(x^4+2\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+2\right)\left(x^4+2\right)=0\)
\(\Rightarrow x^2=2\Rightarrow x=\pm\sqrt{2}\)(do \(x^2+2\ge2>0,x^4+2\ge2>0\))
b) \(\Rightarrow x^2+4x+3=0\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
a) 32 : (3.x - 2) = 8
3x - 2 = 32 : 8
3x - 2 = 4
3x = 4 + 2
3x = 6
x = 6 : 3
x = 2
b) 75 : (x - 18) = 25
x - 18 = 75 : 25
x - 18 = 3
x = 3 + 18
x = 21
c) (15 - 6.x) . 243 = 729
15 - 6x = 729 : 243
15 - 6x = 3
6x = 15 - 3
6x = 12
x = 12 : 6
x = 2
d) 4.(x - 12) + 9 = 17
4(x - 12) = 17 - 9
4(x - 12) = 8
x - 12 = 8 : 4
x - 12 = 2
x = 2 + 12
x = 14
e) 20 - 2.(x + 4) = 4
2(x + 4) = 20 - 4
2(x + 4) = 16
x + 4 = 16 : 2
x + 4 = 8
x = 8 : 2
x = 4
`32: ( 3xx x -2)=8`
`3xx x-2=32:8`
`3xx x-2=4`
`3 xx x=4+2`
`3xx x=6`
`x=6:3`
`x=2`
__
`75 : (x-18) =25`
`x-18=75:25`
`x-18= 3`
`x=3+18`
`x=21`
__
`(15-6 xx x ) xx 243 =729`
`15-6 xx x = 729 : 243`
`15-6 xx x = 3`
`6 xx x=15-3`
`6 xx x=12`
`x=12:6`
`x=2`
__
`4 xx (x-12)+9=17`
`4 xx (x-12)=17-9`
`4 xx (x-12)= 8`
`x-12=8:4`
`x-12=2`
`x=2+12`
`x=14`
__
`20-2xx(x+4)=4`
`2xx(x+4)=20-4`
`2xx(x+4)=16`
`x+4=16:2`
`x+4=8`
`x=8-4`
`x=4`
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)
hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)
b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)
hay \(x=\dfrac{8}{41}\)
c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|2x-1\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)
\(\left(x-2\right)\left(2x+1\right)=8\)
\(2x^2+x-4x-2=8\)
\(2x^2-3x-2=8\)
\(2x^2-3x-2-8=0\)
\(2x^2-3x-10=0\)
ui... giải đến đây ms nhìn ra toán lp 6 nên bn cho \(x\in\varnothing\)nha , nếu ko vô nghiệm cx đc
a) (x-2)(2x+1)=8
\(\Rightarrow\orbr{\begin{cases}x-2=8\\2x+1=8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8+2=10\\2x=8-1\Rightarrow2x=7\Rightarrow x=\frac{7}{2}\end{cases}}\)
Vậy \(x\in\left\{10;\frac{7}{2}\right\}\)
b) (8-x)(4x+1)=20
\(\Rightarrow\orbr{\begin{cases}8-x=20\\4x+1=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8-20=-12\\4x=20-1\Rightarrow4x=19\Rightarrow x=\frac{19}{4}\end{cases}}\)
Vậy \(x\in\left\{-12;\frac{19}{4}\right\}\)