1) \(x^3+9x=0\)
2) \(4x^2+\frac{2}{5}x=0\)
Help me!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x^3+9x=0\)
<=>\(x\left(x^2+9\right)=0\)
<=>\(x\left(x-3\right)\left(x+3\right)=0\)
<=> \(x=0\)
\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
<=>\(x=0\)
\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(2,4x^2+\frac{2}{5}x=0\)
<=>\(x\left(4x+\frac{2}{5}\right)=0\)
<=>\(\orbr{\begin{cases}x=0\\4x+\frac{2}{5}=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=\frac{-1}{10}\end{cases}}\)
1, x^3+9x=0
<=>x(x^2+9)=0
<=>x=0 hoặc x^2+9=0
<=>x=0 hoặc x^2=-9 (ktm)
vậy x=0
1) \(\frac{4x-8}{2x^2+1}=0\)
<=> \(\frac{4\left(x-2\right)}{2x^2+1}=0\)
<=> 4(x - 2) = 0
<=> x - 2 = 0
<=> x = 2
2) \(\frac{x^2-x-6}{x-3}=0\)
<=> \(\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
<=> x + 2 = 0
<=> x = -2
3) xem ở đây Câu hỏi của Vương Thanh Thanh
4) \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
<=> \(\frac{12}{\left(1+3x\right)\left(1-3x\right)}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
<=> 12 = (1 - 3x)2 - (1 + 3x2)
<=> 12 = 1 - 6x + 9x2 - 1 - 6x - 9x2
<=> 12 = -12x
<=> x = -1
5) ĐKXĐ: \(x\ne1,x\ne3\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
<=> \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 5)(x - 3) = (x + 1)(x - 1) - 8
<=> x2 - 3x + 5x - 15 = x2 - x + x - 1 - 8
<=> x2 + 2x - 15 = x2 - 9
<=> x2 + 2x - 15 - x2 = -9
<=> 2x - 15 = -9
<=> 2x = -9 + 15
<=> 2x = 6
<=> x = 3 (ktm)
=> pt vô nghiệm
6) ĐKXĐ: \(x\ne\pm2\)
\(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\)
<=> \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{\left(x-2\right)\left(x+2\right)}+1\)
<=> (x + 1)(x + 2) - 5(x - 2) = 12 + (x - 2)(x + 2)
<=> x2 + 2x + x + 2 - 5x + 10 = 12 + x2 + 2x - 2x - 4
<=> x2 - 2x + 12 = x2 + 8
<=> x2 - 2x + 12 - x2 = 8
<=> -2x + 12 = 8
<=> -2x = 8 - 12
<=> -2x = -4
<=> x = 2 (ktm)
=> pt vô nghiệm
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
từ đề\(\Leftrightarrow\frac{x-1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{2x-2}{x\left(x-2\right)-4\left(x-2\right)}+\frac{3x-3}{x\left(x+1\right)-2\left(x+1\right)}+\frac{4x-4}{x\left(x+1\right)+5\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{4}{\left(x+1\right)\left(x+5\right)}=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-2}-\frac{1}{x-4}+\frac{1}{x-2}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x-5}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{x-2}-\frac{2}{x-5}\right)=0\) vì \(\frac{2}{x-2}-\frac{2}{x-5}\)luôn khác 0 nên x-1=0 nên x=1.
Điều kiện xác định : x khác 4,5,2,-1. Do đó x=1 thỏa mãn. Vậy x=1
a. \(x^2-4x+3\le0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(1\le x\le3\)
b. \(9x^2-6x\ge0\)
\(\Leftrightarrow3x\left(3x-2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(0\le x\le\frac{2}{3}\)
c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.
\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
x3+9x=0
<=> x(x2+9)=0
<=> x= hoặc x2=-9
<=> x=0
Vậy x=0
X^3+9x=0
=>x(x^2-9)=0
=>x(x-3)(x+3)=0
=>x=0
Hoặc x-3=0 =>x=-3
Hoặc x+3=0 =>x=3
Vậy x=0,x=3;x=-3