\(\hept{\begin{cases}x\left(x-2\right)\left(2x-y\right)=6\\\left(x-3\right)^2+2y=10\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

b, \(x^3+3x^2y-4y^3+x-y=0\)
\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)
\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó pt (2) của hệ trở thành:
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)

c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)

1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

1. Hướng làm đặt kiểu tổng tích.
\(\hept{\begin{cases}4x^2-4x+4\left(y^2-2y\right)=22-1-4=17\\\left(4x^2-4x\right).4\left(y^2-2y\right)=2.16=32\end{cases}}\)
2. \(x^2y^2+2y-x-x^2y^2-x-y=2xy-3xy
\)
\(y-2x=xy< =>
y\left(1-x\right)=2x=>y=\frac{2x}{1-x}\)
. Hoặc
chia 2 vế pt cho xy(xy khác 0) vầ đặt biến \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\)
Từ phương trình thứ 2 => \(y=\frac{10-\left(x-3\right)^2}{2}=\frac{1-x^2+6x}{2}\) thế vào pt thứ nhất:
\(x\left(x-2\right)\left(4x-1+x^2-6x\right)=12\)
<=> \(\left(x^2-2x\right)\left(x^2-2x-1\right)=12\)
Đặt: \(t=x^2-2x\)ta có: t ( t - 1) = 12 em giải tìm t => x => y