K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABC vuông tại A co AH là đường cao

nên AH^2=HB*HC

b: BC=3,6+6,4=10cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

=>AC=8cm

Bạn kham khảo link này nhé.

Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath

15 tháng 4 2019

Link đâu ạ em tham khảo vs 

a: Xet ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồg dạng với ΔHBA

b: ΔABC vuông tại A mà AH là đường cao

nên HA^2=HB*HC

c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co

góc ACD=góc HCE

=>ΔCAD đồng dạng với ΔCHE

=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)

b. 

Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$

$\Rightarrow AH^2=BH.CH$.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Hình vẽ:

9 tháng 6 2021

Xét tứ giác ABKC có:

\(B\chi\perp AB\) (gt)

\(AC\perp AB\) (gt)

\(\Rightarrow B\chi\text{//}AC\) 

\(\Rightarrow\text{Tứ giác ABKC}\) là hình thang

mà \(\widehat{A}=\widehat{B}=\)\(90^0\)

Vậy hình thang ABKC là hình thang vuông

b) Xét ΔABK và ΔCHA có:

\(\widehat{ABK}=\widehat{CHA}=\)\(90^0\)

\(\widehat{BAK}=\widehat{HCA} \) ( cùng phụ với \(\widehat{HAC}\) )

\(\Rightarrow\text{ΔABK}\) \(\sim\)ΔCHA (gg)

\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{CA}\)

\(\Rightarrow AB.CA=AK.CH\)

c)  Xét ΔAHB và ΔCHA có:

\(\widehat{AHB}=\widehat{CHA}=\)\(90^0\)

\(\widehat{BAH}=\widehat{HCA}\)​ ( cùng phụ với \(\widehat{HAC}\) )​

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(gg\right)\)

\(\Rightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)

\(\Rightarrow AH.AH=BH.CH\)

\(\Rightarrow AH^2=BH.CH\)

\(\Rightarrow AH^2=9.16\)

\(\Rightarrow AH=12\left(cm\right)\)

Xét \(\Delta AHB\) vuông tại H có:

\(AB^2=BH^2+HA^2\) ( Định lí Pitago)

\(\Rightarrow AB^2=9^2+12^2\)

\(\Rightarrow AB=\sqrt{225=15\left(cm\right)}\)

 

a: ΔACB vuông tại A

mà AH là đường cao

nên AH^2=HB*HC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CD là phân giác

=>DA/AC=DB/CB

=>DA/4=DB/5=6/9=2/3

=>DA=8/3cm

=>\(CD=\sqrt{8^2+\left(\dfrac{8}{3}\right)^2}=\dfrac{8}{3}\sqrt{10}\)

Xét ΔHCI vuông tại H và ΔACD vuông tại A có

góc HCI=góc ACD

=>ΔHCI đồng dạng với ΔACD

=>CI/CD=HC/AC

=>\(\dfrac{CI}{\dfrac{8}{3}\sqrt{10}}=\dfrac{6.4}{8}=\dfrac{4}{5}\)

=>\(CI=\dfrac{32}{15}\sqrt{10}\left(cm\right)\)

sin ACH=AB/BC=3/5

=>góc ACH=37 độ

=>góc ACI=18,5 độ

\(S_{ACI}=\dfrac{1}{2}\cdot\dfrac{32}{15}\sqrt{10}\cdot8\cdot sin18.5^0\simeq8,56\left(cm^2\right)\)

12 tháng 5 2022

(Tự vẽ hình)

a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)

b) Áp dụng định lý Pytago có:

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)

=>AB*AC=AH*CB

b: Xét ΔABC vuông tại A có AH là đường cao

nên AC^2=HC*BC

c: Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC