Chứng minh rằng:
-a(c-d)-d(a+c)=-c(a+d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]\)
\(=-\left(b+c\right)^2+\left(a+d\right)^2\) ( 1 )
\(\left(a+b-c-d\right)\left(a-b+c-d\right)=\left(b-c\right)^2-\left(a-d\right)^2\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
\(b^2+2bc+c^2-a^2-2ad-d^2=a^2-2ad+d^2-b^2+2bc-c^2\)
\(4ad=4ac\Rightarrow ad=bc\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)( đpcm )
(a + b)(c + d) - (a + d)(b + c)
= ac + ad + bc + bd - ab - ac- bd - dc
= ad - ab + bc - dc
= a(d - b) + c(b- d)
= a(d - b) - c(d - b)
= (a - c)(d - b) (=vế phải)
Vậy đpcm
Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)
\(\Leftrightarrow ad=bc\)
hay \(\dfrac{a}{c}=\dfrac{b}{d}\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>(a+b)(c-d)=(a-b)(c+d)
=>ac-ad+bc-bd=ac+ad-bc-bd
=>-ad+bc=ad-bc
=>-2ad=-2bc
=>ad=bc
=>a/b=c/d
Ta có:
-a(c-d)-d(a+c)=-c(a+d)
<=>-ac+ad-ad-cd=-ac-cd
<=>-ac-cd=-ac-cd (đpcm)
Trả lời:
\(-a\left(c-d\right)-d\left(a+c\right)\)
\(=-ac+ad-ad-cd\)
\(=-ac-cd+\left(ad-ad\right)\)
\(=-c\left(a+d\right)+0\)
\(=-c\left(a+d\right)\)\(\left(đpcm\right)\)
Hok tốt!
Good girl