Tìm GTNN của \(A=x^4+6x^3+13x^2+12x+12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4+6x^3+13x^2+12x+12\)
\(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)
\(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)
\(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)
Đặt \(t=x^2+3x+5\)
Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)
Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3
<=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2
\(A=\left(x^4-3x^3+2x^2\right)-3\left(x^3-3x^2+2x\right)+2\left(x^2-3x+2\right)+2019\)
\(=x^2\left(x^2-3x+2\right)-3x\left(x^2-3x+2\right)+2\left(x^2-3x+2\right)+2019\)
\(=\left(x^2-3x+2\right)\left(x^2-3x+2\right)+2019\)
\(=\left(x^2-3x+2\right)^2+2019\ge2019\)
\(A_{min}=2019\) khi \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a)\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\5x-13=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{13}{5}\end{array}\right.\)
b)\(6x^4=9x^3\Leftrightarrow6x^4-9x^3=0\Leftrightarrow3x^3\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x^3=0\\2x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{3}{2}\end{array}\right.\)
c)\(\left(x-2\right)^2-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x-2\right)^2=4x^2+12x+9\)
\(\Leftrightarrow\left(x-2\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x-2=2x+3\)
\(\Leftrightarrow-x=5\Leftrightarrow x=-5\)
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
1) \(f\left(x\right)=6x^2-15x+4\)
\(\Rightarrow f\left(x\right)=6\left(x^2-\dfrac{5}{3}x\right)+4\)
\(\Rightarrow f\left(x\right)=6\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}-\dfrac{25}{36}\right)+4\)
\(\Rightarrow f\left(x\right)=6\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+4-\dfrac{25}{6}\)
\(\Rightarrow f\left(x\right)=6\left(x-\dfrac{5}{6}\right)^2-\dfrac{1}{6}\ge-\dfrac{1}{6}\left(6\left(x-\dfrac{5}{6}\right)^2\ge0,\forall x\right)\)
\(\Rightarrow GTNN\left(f\left(x\right)\right)=-\dfrac{1}{6}\left(tạix=\dfrac{5}{6}\right)\)
2) \(f\left(x\right)=4x^2-13x+5\)
\(\Rightarrow f\left(x\right)=4\left(x^2-\dfrac{13}{4}x\right)+5\)
\(\Rightarrow f\left(x\right)=4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}-\dfrac{169}{64}\right)+5\)
\(\Rightarrow f\left(x\right)=4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)+5-\dfrac{169}{16}\)
\(\Rightarrow f\left(x\right)=4\left(x-\dfrac{13}{8}\right)^2-\dfrac{89}{16}\ge-\dfrac{89}{16}\left(4\left(x-\dfrac{13}{8}\right)^2\ge0,\forall x\right)\)
\(\Rightarrow GTNN\left(f\left(x\right)\right)=-\dfrac{89}{16}\left(tạix=\dfrac{13}{8}\right)\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a: \(x^2-8x+21=x^2-8x+16+5=\left(x-4\right)^2+5>=5\)
Dấu '=' xảy ra khi x=4
b: \(16x^2+16x-30\)
\(=16x^2+2\cdot4x\cdot2+4-34\)
\(=\left(4x+2\right)^2-34>=-34\)
Dấu '=' xảy ra khi x=-1/2
d: \(-x^2+12x+34\)
\(=-\left(x^2-12x-34\right)\)
\(=-\left(x^2-12x+36-70\right)\)
\(=-\left(x-6\right)^2+70< =70\)
Dấu '=' xảy ra khi x=6
Cách mình dài hơn ạ :
\(A=x^4+6x^3+9x^2+4x^2+12x+12\)
\(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)
\(=\left(x^2+3x+2\right)^2+8\ge8\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)