K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Biết trước điểm rơi rồi thì quá EZ.

\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)

\(\ge13\)

Dấu "=" xảy ra tại a=2;b=3;c=4

18 tháng 2 2020

\(B=\frac{x^2-20}{x^2+5}=1-\frac{25}{x^2+5}\)

Ta có: \(x^2+5\ge5>0\Rightarrow\frac{25}{x^2+5}\le\frac{25}{5}=5\Rightarrow B\ge1-5=-4\)

Dấu = xảy ra <=> x^2=0 <=> x=0

14 tháng 6 2019

25m + 8m = 33m

38m – 15m = 23m

17m + 33m = 50m

85m – 53m = 32m

17 tháng 7 2016

Ta có : \(B=\frac{14x^2-8x+9}{3x^2+6x+9}=\frac{2\left(x^2+2x+3\right)+\left(12x^2-12x+3\right)}{3\left(x^2+2x+3\right)}\)

\(=\frac{12\left(x-\frac{1}{2}\right)^2}{3\left(x^2+2x+3\right)}+\frac{2}{3}\ge\frac{2}{3}\) . Dấu "=" xảy ra khi x = 1/2

Vậy Min B = 2/3 khi x = 1/2

26 tháng 11 2019

                                                        Bài giải

\(A=\frac{x^2-9}{x^2+1}=\frac{x^2+1-10}{x^2+1}=1-\frac{10}{x^2+1}\)

* A đạt GTNN khi \(\frac{10}{x^2+1}\) đạt GTLN

\(\Rightarrow\text{ }x^2+1\) đạt GT là số nguyên dương nhỏ nhất

\(\Rightarrow\text{ }x^2+1=1\)\(\Leftrightarrow\text{ }x^2=0\text{ }\Leftrightarrow\text{ }x=0\)

\(\Rightarrow\text{ }\frac{10}{x^2+1}\le10\)

\(\Rightarrow\text{ }A=1-\frac{10}{x^2+1}\le1-10=-9\)

\(\Rightarrow\text{ }Min\text{ A = 9}\)

\(A\) đạt GTLN khi \(\frac{10}{x^2+1}\) đạt GTNN

\(\Rightarrow\text{ }x^2+1\) đạt GTLN

\(\Rightarrow\) Không thể tính được

26 tháng 11 2019

Đề của bạn không tìm được GTLN nha !

6 tháng 3 2019

\(A=\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}-2019\)

Ta có:

\(\left(x-\frac{2}{5}\right)^2\ge0\)    (Vì có mũ là số chẵn)

\(\left(y+10\right)^{10}\ge0\)    (Vì có mũ là số chẵn)

=> Để A đạt GTNN:

\(\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}-2019\)\(=0+0-2019=-2019\)

Vậy GTNN của A là -2019 khi \(x=\frac{2}{5};y=-20\).

T**k mik nhé!

\(\frac{ }{\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }\frac{ }{ }\sqrt[]{}\sqrt{ }\widehat{ }^{ }_{ }^2_{ }\underrightarrow{ }\cos\in}\)

NV
12 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

a.

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(m-1\right)^2+2\left(m+3\right)=4m^2-6m+10\)

\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{3}{4}\)

Dấu = xảy ra khi \(m=\dfrac{3}{4}\)

b.

\(x_1^2+x_2^2=8m^3-8m^2\)

\(\Leftrightarrow4m^2-6m+10=8m^3-8m^2\)

\(\Leftrightarrow8m^3-12m^2+6m-1=9\)

\(\Leftrightarrow\left(2m-1\right)^3=9\)

\(\Leftrightarrow2m-1=\sqrt[3]{9}\)

\(\Rightarrow m=\dfrac{1+\sqrt[3]{9}}{2}\)

a: Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=4m^2-4m+1+15=(2m-1)^2+15>0

=>Phương trình luôn có 2 nghiệm pb

A=x1^2+x2^2

=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>=31/4

Dấu = xảy ra khi m=3/4

b: x1^2+x2^=8m^3-8m^2

=>4m^2-6m+10=8m^3-8m^2

=>8m^3-8m^2-4m^2+6m-10=0

=>8m^3-12m^2+6m-10=0

=>\(m\simeq1,54\)