Tìm số nguyên x, biết:
d) (2x2 - 10x + 5)\(⋮\)(x - 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d ) 26 - ( x - 5 ) = 32
x - 5 = 26 - 32
x - 5 = - 6
x = - 6 + 5
x = - 1
Vậy x = - 1
B = x − 10 x − 5 = 1 − 5 x − 5 . Làm tương tự câu a ta được x ∈ {4;6;0;10}
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
2\(x^2\) - 5 \(\sqrt{x^2-5x+7}\) = 10\(x\) - 17 Đk \(x^2\) - 5\(x\) + 7 ≥ 0
\(x^2\) - 2.\(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{3}{4}\) = (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{3}{4}\) > 0 ∀ \(x\)
ta có: 2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) = 10\(x\) - 17
2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) - 10\(x\) + 17 = 0
(2\(x^2\) - 10\(x\) + 14) - 5\(\sqrt{x^2-5x+7}\) + 3 = 0
2.(\(x^2\) - 5\(x\) + 7) - 5.\(\sqrt{x^2-5x+7}\) + 3 = 0
Đặt \(\sqrt{x^2-5x+7}\) = y > 0 ta có:
2y2 - 5y + 3 = 0
2 + (-5) + 3 = 0
⇒ y1= 1; y2 = \(\dfrac{3}{2}\)
TH1 y = 1 ⇒ \(\sqrt{x^2-5x+7}\) = 1
⇒ \(x^2\) - 5\(x\) + 7 = 1
\(x^2\) - 5\(x\) + 6 = 0
\(\Delta\) = 25 - 24 = 49
\(x_1\) = \(\dfrac{-\left(-5\right)+\sqrt{1}}{2}\) = 3;
\(x_2\) = \(\dfrac{-\left(-5\right)-\sqrt{1}}{2}\) = 2;
TH2 y = \(\dfrac{3}{2}\)
\(\sqrt{x^2-5x+7}\) = \(\dfrac{3}{2}\)
\(x^2\) - 5\(x\) + 7 = \(\dfrac{9}{4}\)
4\(x^2\) - 20\(x\) + 28 = 9
4\(x^2\) - 20\(x\) + 19 = 0
\(\Delta'\) = 102 - 4.19
\(\Delta'\) = 24
\(x_1\) = \(\dfrac{-\left(-10\right)+\sqrt{24}}{4}\) = \(\dfrac{10+\sqrt{24}}{4}\)
\(x_2\) = \(\dfrac{-\left(-10\right)-\sqrt{24}}{4}\) = \(\dfrac{10-\sqrt{24}}{4}\)
8 - 5\(\sqrt{6}\)
Từ các lập luận trên kết luận phương trình có tập nghiệm là:
S = {8 - 5\(\sqrt{6}\); 2 ; 3; 8 + 5\(\sqrt{6}\)}
2�2x2 - 5 �2−5�+7x2−5x+7 = 10�x - 17 Đk �2x2 - 5�x + 7 ≥ 0
�2x2 - 2.5225�x + 254425 + 3443 = (�x - 5225)2 + 3443 > 0 ∀ �x
ta có: 2�2x2 - 5�2−5�+7x2−5x+7 = 10�x - 17
2�2x2 - 5�2−5�+7x2−5x+7 - 10�x + 17 = 0
(2�2x2 - 10�x + 14) - 5�2−5�+7x2−5x+7 + 3 = 0
2.(�2x2 - 5�x + 7) - 5.�2−5�+7x2−5x+7 + 3 = 0
Đặt �2−5�+7x2−5x+7 = y > 0 ta có:
2y2 - 5y + 3 = 0
2 + (-5) + 3 = 0
⇒ y1= 1; y2 = 3223
TH1 y = 1 ⇒ �2−5�+7x2−5x+7 = 1
⇒ �2x2 - 5�x + 7 = 1
�2x2 - 5�x + 6 = 0
ΔΔ = 25 - 24 = 49
�1x1 = −(−5)+122−(−5)+1 = 3;
�2x2 = −(−5)−122−(−5)−1 = 2;
TH2 y = 3223
�2−5�+7x2−5x+7 = 3223
�2x2 - 5�x + 7 = 9449
4�2x2 - 20�x + 28 = 9
4�2x2 - 20�x + 19 = 0
Δ′Δ′ = 102 - 4.19
Δ′Δ′ = 24
�1x1 = −(−10)+2444−(−10)+24 = 10+244410+24
�2x2 = −(−10)−2444−(−10)−24 = 10−244410−24
8 - 566
Từ các lập luận trên kết luận phương trình có tập nghiệm là:
S = {8 - 566; 2 ; 3; 8 + 566}
\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
\(\frac{2x^2-10x+5}{x-5}=\frac{2x\left(x-5\right)+5}{x-5}=2x+\frac{5}{x-5}\)
Vì \(x\in Z\Rightarrow2x\in Z;x-5\in Z\)
Để \(2x^2-10x+5⋮x-5\)thì \(x-5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{6;4;10;0\right\}\)
Vậy ...
Từ đề bài, ta suy ra:
\(\frac{2x\left(x-5\right)+5}{\left(x-5\right)}\Leftrightarrow2x+\frac{5}{x-5}\)
Để phân thức nguyên thì \(\frac{5}{x-5}\in Z\)
Vậy \(\left(x-5\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(x-5\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{4;6;0;10\right\}\)
Vậy ....