K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

\(\frac{2x^2-10x+5}{x-5}=\frac{2x\left(x-5\right)+5}{x-5}=2x+\frac{5}{x-5}\)

Vì \(x\in Z\Rightarrow2x\in Z;x-5\in Z\)

Để \(2x^2-10x+5⋮x-5\)thì \(x-5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x\in\left\{6;4;10;0\right\}\)

Vậy ...

4 tháng 3 2020

Từ đề bài, ta suy ra:

\(\frac{2x\left(x-5\right)+5}{\left(x-5\right)}\Leftrightarrow2x+\frac{5}{x-5}\)

Để phân thức nguyên thì \(\frac{5}{x-5}\in Z\)

Vậy \(\left(x-5\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(x-5\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x\in\left\{4;6;0;10\right\}\)

Vậy ....

13 tháng 1 2018

d ) 26 - ( x - 5 ) = 32

             x - 5   = 26 - 32

             x - 5   = - 6

                  x   = - 6 + 5

                  x   = - 1

Vậy x = - 1

13 tháng 1 2018

giúp mk vs

17 tháng 11 2018

B = x − 10 x − 5 = 1 − 5 x − 5 . Làm tương tự câu a ta được  x ∈ {4;6;0;10}

7 tháng 8 2021

bạn ơi có câu c không bạn

 

31 tháng 7 2021

a) \(\text{5x(x-2)+(2-x)=0}\)

\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\text{x(2x-5)-10x+25=0}\)

\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)

 

31 tháng 7 2021

c) \(\dfrac{25}{16}-4x^2+4x-1=0\)

\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)

\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)

\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)

\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)

\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)

\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)

3 tháng 1 2024

2\(x^2\) - 5 \(\sqrt{x^2-5x+7}\) = 10\(x\) - 17 Đk \(x^2\) - 5\(x\) + 7  ≥ 0

\(x^2\) - 2.\(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{3}{4}\) = (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{3}{4}\) > 0 ∀ \(x\)

ta có: 2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) = 10\(x\) - 17

2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) - 10\(x\) + 17 = 0

(2\(x^2\) - 10\(x\) + 14)  -  5\(\sqrt{x^2-5x+7}\) + 3 = 0

2.(\(x^2\) - 5\(x\) + 7) - 5.\(\sqrt{x^2-5x+7}\) + 3 = 0

Đặt \(\sqrt{x^2-5x+7}\) = y > 0 ta có: 

2y2 - 5y + 3  = 0

2 + (-5) + 3 = 0

⇒ y1= 1; y2 =  \(\dfrac{3}{2}\) 

TH1 y = 1 ⇒ \(\sqrt{x^2-5x+7}\)  = 1

⇒ \(x^2\) - 5\(x\) + 7  = 1

    \(x^2\) - 5\(x\) + 6 = 0

     \(\Delta\) = 25 -  24 = 49

    \(x_1\) = \(\dfrac{-\left(-5\right)+\sqrt{1}}{2}\) =  3;

    \(x_2\) =  \(\dfrac{-\left(-5\right)-\sqrt{1}}{2}\)  = 2;

TH2  y = \(\dfrac{3}{2}\)

        \(\sqrt{x^2-5x+7}\) = \(\dfrac{3}{2}\)

         \(x^2\) - 5\(x\) + 7 = \(\dfrac{9}{4}\)

         4\(x^2\) - 20\(x\) + 28 = 9

          4\(x^2\) - 20\(x\) + 19 = 0

           \(\Delta'\) = 102 - 4.19

          \(\Delta'\) = 24

           \(x_1\) = \(\dfrac{-\left(-10\right)+\sqrt{24}}{4}\) = \(\dfrac{10+\sqrt{24}}{4}\)

           \(x_2\) = \(\dfrac{-\left(-10\right)-\sqrt{24}}{4}\) = \(\dfrac{10-\sqrt{24}}{4}\)

            8 - 5\(\sqrt{6}\)

Từ các lập luận trên kết luận phương trình có tập nghiệm là:

S = {8 - 5\(\sqrt{6}\); 2 ; 3; 8 + 5\(\sqrt{6}\)}

 

           

 

    

   

   

 

    

 

3 tháng 1 2024

2�2x2 - 5 �2−5�+7x25x+7 = 10x - 17 Đk �2x2 - 5x + 7  ≥ 0

�2x2 - 2.5225x + 254425 + 3443 = (x - 5225)2 + 3443 > 0 ∀ x

ta có: 2�2x2 - 5�2−5�+7x25x+7 = 10x - 17

2�2x2 - 5�2−5�+7x25x+7 - 10x + 17 = 0

(2�2x2 - 10x + 14)  -  5�2−5�+7x25x+7 + 3 = 0

2.(�2x2 - 5x + 7) - 5.�2−5�+7x25x+7 + 3 = 0

Đặt �2−5�+7x25x+7 = y > 0 ta có: 

2y2 - 5y + 3  = 0

2 + (-5) + 3 = 0

⇒ y1= 1; y2 =  3223 

TH1 y = 1 ⇒ �2−5�+7x25x+7  = 1

⇒ �2x2 - 5x + 7  = 1

    �2x2 - 5x + 6 = 0

     ΔΔ = 25 -  24 = 49

    �1x1 = −(−5)+122(5)+1 =  3;

    �2x2 =  −(−5)−122(5)1  = 2;

TH2  y = 3223

        �2−5�+7x25x+7 = 3223

         �2x2 - 5x + 7 = 9449

         4�2x2 - 20x + 28 = 9

          4�2x2 - 20x + 19 = 0

           Δ′Δ = 102 - 4.19

          Δ′Δ = 24

           �1x1 = −(−10)+2444(10)+24 = 10+244410+24

           �2x2 = −(−10)−2444(10)24 = 10−24441024

            8 - 566

Từ các lập luận trên kết luận phương trình có tập nghiệm là:

S = {8 - 566; 2 ; 3; 8 + 566}

6 tháng 10 2021

2.a) (ko phân tích được, bạn coi lại nhé)

b) phần còn lại của chứng minh là gì thế bạn?

6 tháng 10 2021

\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)