K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

- Ta có: \(\left(4x-5\right).\left(4x-5\right).\left(2x-3\right).\left(x-1\right)=9\)

    \(\Leftrightarrow\left[\left(4x-5\right).\left(4x-5\right)\right].\left[\left(2x-3\right).\left(x-1\right)\right]=9\)

    \(\Leftrightarrow\left(16x^2-40x+25\right).\left(2x^2-5x+3\right)=9\)

    \(\Leftrightarrow\left(16x^2-40x+25\right).\left[8.\left(2x^2-5x+3\right)\right]=8.9=72\)

    \(\Leftrightarrow\left(16x^2-40x+25\right).\left(16x^2-40x+24\right)-72=0\)(**)

- Đặt  \(a=16x^2-40x+24\)

- Thay \(a=16x^2-40x+24\)vào (**), ta có:

         \(\left(a+1\right).a-72=0\)

    \(\Leftrightarrow a^2+a-72=0\)

    \(\Leftrightarrow\left(a^2-8a\right)+\left(9a-72\right)=0\)

    \(\Leftrightarrow a.\left(a-8\right)+9.\left(a-8\right)=0\)

    \(\Leftrightarrow\left(a-8\right).\left(a+9\right)=0\)

    \(\Leftrightarrow\orbr{\begin{cases}a-8=0\\a+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=8\\a=-9\end{cases}}}\)

+ Với \(a=8\) \(\Rightarrow16x^2-40x+24=8\)

                          \(\Leftrightarrow16x^2-40x+16=0\)

                          \(\Leftrightarrow\left(16x^2-32x\right)-\left(8x-16\right)=0\)

                          \(\Leftrightarrow16x.\left(x-2\right)-8.\left(x-2\right)=0\)

                          \(\Leftrightarrow\left(16x-8\right).\left(x-2\right)=0\)

                          \(\Leftrightarrow\orbr{\begin{cases}16x-8=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

+ Với \(a=-9\)\(\Rightarrow16x^2-40x+33=0\)

                              \(\Leftrightarrow\left(16x^2-40x+25\right)+8=0\)

                              \(\Leftrightarrow\left(4x-5\right)^2+8=0\)

- Vì \(\left(4x-5\right)^2\ge0\)\(\Rightarrow\left(4x-5\right)^2+8\ge8>0\)mà \(\left(4x-5\right)^2+8=0\)

         \(\Rightarrow\left(4x-5\right)^2+8=0\)( vô nghiệm )

Vậy \(S=\left\{\frac{1}{2};2\right\}\)

4 tháng 3 2020

\(\left(4x-5\right)\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow32x^4-160x^3+298x^2-245x+75=9\)

\(\Leftrightarrow32x^4-160x^3+298x^2-245x+75-9=0\)

\(\Leftrightarrow32x^4-160x^3+289x^2-245x+66=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(16x^2-40x+33\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

7 tháng 11 2021

\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

7 tháng 11 2021

a) 9x2-49=0

(3x)2-72=0

<=> (3x-7)(3x+7)=0

th1: 3x-7=0

<=>3x=7

<=>x=\(\dfrac{7}{3}\)

th2: 3x+7=0

<=>3x=-7

<=>x=\(-\dfrac{7}{3}\)

 

 

20 tháng 7 2018

Tìm x, biết:

1) 2x ( x - 5)  - x ( 2x - 4 ) = 15

<=> 2x2 - 10x - 2x2 + 4x - 15 = 0

<=> -6x - 15 = 0

<=> -6x = 15

<=> x = -15/6

2)  ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6

<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0

<=> -4x = -16

<=> x = 4

3)  4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x

<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0

<=> x + 4 = 0

<=> x = -4

4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5

<=> 2x+ x + 6x + 3 - 2x2 - 4x + 5 = 0

<=> 3x + 8 = 0

<=> 3x = -8

<=> x = -8/3

5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0

<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0

.......

6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)

<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0

<=> -2x + 40 = 0

<=> -2x = -40

<=> x = 20

Còn lại tương tự ....

19 tháng 7 2018

1)2x^2-10x-2x^2+14x=15

4x=15

x=15/4

29 tháng 7 2021

\(\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\\ =\dfrac{11x+x-18}{2x-3}\\ =\dfrac{12x-18}{2x-3}\\ =\dfrac{6\left(2x-3\right)}{2x-3}\\ =6\)

\(\dfrac{2x+12}{4x^2-9}+\dfrac{2x+5}{4x-6}\left(ĐKXĐ:x\ne\dfrac{3}{2};x\ne\dfrac{-3}{2}\right)\\ =\dfrac{2x+12}{\left(2x-3\right)\left(2x+3\right)}+\dfrac{2x+5}{2\left(2x-3\right)}\\ =\dfrac{4x+24}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{\left(2x+5\right)\left(2x+3\right)}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x+24+4x^2+6x+10x+15}{2\left(2x-3\right)\left(2x+3\right)}\\ =\dfrac{4x^2+20x+39}{2\left(2x-3\right)\left(2x+3\right)}\)

\(\dfrac{x}{2x+1}+\dfrac{-1}{4x^2-1}+\dfrac{2-x}{2x-1}\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne\dfrac{-1}{2}\right)\\ =\dfrac{x\left(2x-1\right)-1+\left(2-x\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{2x^2-x-1+4x+2-2x^2-x}{\left(2x-1\right)\left(2x+1\right)}\\ =\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}\\ =\dfrac{1}{2x-1}\)

22 tháng 9 2018

* Trả lời:

\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)

\(\Leftrightarrow-3+6x-4-12x=-5x+5\)

\(\Leftrightarrow6x-12x+5x=3+4+5\)

\(\Leftrightarrow x=12\)

\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)

\(\Leftrightarrow6x-15-6+24x=-3x+7\)

\(\Leftrightarrow6x+24x+3x=15+6+7\)

\(\Leftrightarrow33x=28\)

\(\Leftrightarrow x=\dfrac{28}{33}\)

\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)

\(\Leftrightarrow1-3x-6x+12=-4x-5\)

\(\Leftrightarrow-3x-6x+4x=-1-12-5\)

\(\Leftrightarrow-5x=-18\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)

\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)

\(\Leftrightarrow-x-5x=-7\)

\(\Leftrightarrow-6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\)

\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)

\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)

\(\Leftrightarrow-15x+3x=4\)

\(\Leftrightarrow-12x=4\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

a) Ta có: \(\left(x-2\right)\cdot x=2x\cdot\left(x+5\right)\)

\(\Leftrightarrow x\cdot\left(x-2\right)-2x\left(x+5\right)=0\)

\(\Leftrightarrow x\cdot\left[x-2-2\left(x+5\right)\right]=0\)

\(\Leftrightarrow x\left(x-2-2x-10\right)=0\)

\(\Leftrightarrow x\left(-x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy: S={0;-8}

b) Ta có: \(\left(2x-5\right)\left(x+11\right)=\left(5-2x\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(2x-5\right)\left(x+11\right)-\left(5-2x\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+11+2x+1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\3x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-4\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{2};-4\right\}\)

c) Ta có: \(x^2+6x+9=4x^2\)

\(\Leftrightarrow\left(x+3\right)^2-\left(2x\right)^2=0\)

\(\Leftrightarrow\left(x+3-2x\right)\left(x+3+2x\right)=0\)

\(\Leftrightarrow\left(-x+3\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: S={3;-1}

d) Ta có: \(\left(x+2\right)\left(5-4x\right)=x^2+4x+4\)

\(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\-5x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{5}\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

1.

PT \(\Leftrightarrow (x+2)(x-3)(x-4)(x+6)=16x^2\)

\(\Leftrightarrow [(x+2)(x+6)][(x-3)(x-4)]=16x^2\)

\(\Leftrightarrow (x^2+8x+12)(x^2-7x+12)=16x^2\)

\(\Leftrightarrow (a+8x)(a-7x)=16x^2\) (đặt \(x^2+12=a\) )

\(\Leftrightarrow a^2+ax-72x^2=0\)

\(\Leftrightarrow (a-8x)(a+9x)=0\Rightarrow \left[\begin{matrix} a-8x=0\\ a+9x=0\end{matrix}\right.\)

Nếu \(a-8x=0\Leftrightarrow x^2+12-8x=0\Leftrightarrow (x-2)(x-6)=0\Rightarrow \left[\begin{matrix} x=2\\ x=6\end{matrix}\right.\)

Nếu \(a+9x=0\Leftrightarrow x^2+12+9x=0\Leftrightarrow x=\frac{-9\pm \sqrt{33}}{2}\)

Vậy...........

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

2.

PT \(\Leftrightarrow [(4x+7)(2x+1)][(4x+5)(x+1)]=9\)

\(\Leftrightarrow (8x^2+18x+7)(4x^2+9x+5)=9\)

\(\Leftrightarrow (2a+7)(a+5)=9\) (đặt \(a=4x^2+9x\) )

\(\Leftrightarrow 2a^2+17a+26=0\)

\(\Leftrightarrow (a+2)(2a+13)=0 \)\(\Rightarrow \left[\begin{matrix} a+2=0\\ 2a+13=0\end{matrix}\right.\)

Nếu \(a+2=0\Leftrightarrow 4x^2+9x+2=0\Leftrightarrow (4x+1)(x+2)=0\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{4}\\ x=-2\end{matrix}\right.\)

Nếu \(2a+13=0\Leftrightarrow 8x^2+18x+13=0\) (pt này dễ thấy vô nghiệm)

Vậy.........

1 tháng 9 2020

\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

     \(\text{Vậy x=-5}\)

\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)

\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)

\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)

\(\Rightarrow-16x-8=7\)

\(\Rightarrow-16x=15\)

\(\Rightarrow x=\frac{-15}{16}\)

      \(\text{Vậy }x=\frac{-15}{16}\)

\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)

\(\Rightarrow-9+8x-1=8\)

\(\Rightarrow8x=18\)

\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)

      \(\text{Vậy }x=\frac{9}{4}\)

\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)

a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)

=>x(2x+10-x+2)=0

=>x(x+12)=0

=>x=0 hoặc x=-12

b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)

=>(2x-5)(3x+12)=0

=>x=5/2 hoặc x=-4

c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)

=>(x-3)(3x+3)=0

=>x=3 hoặc x=-1

d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)

=>(x+2)(-5x+3)=0

=>x=-2 hoặc x=3/5

6 tháng 2 2022

\(a,\left(x-2\right)x=2x\left(x+5\right)\)

\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)

\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)

\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)