K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

n2-3n+13\(⋮\)n+3

n2-3(n+3)+4\(⋮\)n+3

4\(⋮\)n+3

n+3\(\in\)Ư(4)=\(\left\{\pm1;\pm2;\pm4\right\}\)

n+3 1 -1 2 -2 4 -4
n -2 -4 -1 -5 1 -1

ĐKXĐ: \(n\ne3\)

Để M nhận giá trị nguyên thì \(n+1⋮n-3\)

\(\Leftrightarrow n-3+4⋮n-3\)

\(n-3⋮n-3\)

nên \(4⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(4\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{4;2;5;1;7;-1\right\}\)(tm)

Vậy: Khi \(n\in\left\{4;2;5;1;7;-1\right\}\) thì biểu thức M nhận giá trị nguyên

31 tháng 5 2020

em cảm ơn rất nhiều

11 tháng 8 2023

Tham khảo nhé:

n=5a+4b�=5�+4�

a)

Để n chia hết cho 2 thì 5a5�  22 và 4b4�  22.
mà 5a5�  22 thì a  22

còn 4b4�  22 thì luôn đúng.

Vậy để n  22 thì a  22, hay a={2k,kN}�={2�,�∈�} và bN�∈�

b)

Để n chia hết cho 5 thì 5a5�  55 và 4b4�  55.
mà 5a5�  55 thì luôn đúng

còn 4b4�  22 thì b  55.

Vậy để n  55 thì b  55, hay b={5k,kN}�={5�,�∈�} và aN�∈�

c)

Để n chia hết cho 10 thì 5a5�  1010 và 4b4�  1010.
mà 5a5�  1010 thì a  22

còn 4b4�  1010 thì b  55.

Vậy để n  1010 thì a  22 và b  55,

hay a=2k,b=5h;k,hN�=2�,�=5ℎ;�,ℎ∈�

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2k,kZ2�,�∈�

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5k,kZ5�,�∈�

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 10k,kZ

11 tháng 8 2023

THAM KHẢO nhé:

n=5a+4b

=5+4

a)

Để n chia hết cho 2 thì 5a5  22 và 4b4  22.
mà 5a
5  22 thì a  22

còn 4b4  22 thì luôn đúng.

Vậy để n  22 thì a  22, hay a={2k,kN}={2,} và bN

b)

Để n chia hết cho 5 thì 5a5  55 và 4b4  55.
mà 5a
5  55 thì luôn đúng

còn 4b4  22 thì b  55.

Vậy để n  55 thì b  55, hay b={5k,kN}={5,} và aN

c)

Để n chia hết cho 10 thì 5a5  1010 và 4b4  1010.
mà 5a
5  1010 thì a  22

còn 4b4  1010 thì b  55.

Vậy để n  1010 thì a  22 và b  55,

hay a=2k,b=5h;k,hN=2,=5;,

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2k,kZ2,

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5k,kZ5,

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 10k,kZ

 

14 tháng 2 2018

\(n^2+7n+2=n\left(n+4\right)+3\left(n+4\right)-10\)

Để biểu thức chia hết thì \(n+4\inƯ\left(10\right)\)

Bạn tự giải tiếp nk.

14 tháng 2 2018

cảm ơn bn nhak

3 tháng 10 2016

2n + 2n + 2 = 5

2n . 1 + 2n . 22 = 5

2n . ( 1 + 5 ) = 5

2n . 6 = 5

2n = 5 : 6

2n = 5/6

=> đề sai

3 tháng 10 2016

 2n+2n+2=5

2n.1+2n.22=5

2n.(1+22)=5

2n.5       =5

2n            =5/5

2n         =1

=>n=0

3 tháng 8 2023

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

3 tháng 8 2023

Bạn xem lại câu A+B mới là số chính phương k?

17 tháng 12 2017

\(n+4⋮n+1\)

\(n+1+3⋮n+1\)

\(\orbr{\begin{cases}n+1⋮n+1\\3⋮n+1\end{cases}}\Rightarrow n+1\inƯ\left(3\right)\)

\(n+1\in\left\{1,3\right\}\)

\(\Rightarrow n\in\left\{0,2\right\}\)