K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Ta có : \(2^5=32\equiv1\left(mod31\right)\)

\(\Rightarrow\left(2^5\right)^{402}\equiv1\left(mod31\right)\)

\(\Rightarrow2^{2010}\cdot2\equiv2\left(mod31\right)\)

\(\Rightarrow2^{2011}:31\) dư \(2\).

4 tháng 10 2017

12 tháng 2 2016

Giả sử số cần tìm là A đã bớt đi 5.

Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24

=> A=31x k+24 (k là số tự nhiên) 
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29 
Vậy số cần tìm là: A = 551 + 5 = 556

12 tháng 2 2016

Giả sử số cần tìm là A đã bớt đi 5.

Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24

=> A=31x k+24 (k là số tự nhiên) 
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29 
Vậy số cần tìm là: A = 551 + 5 = 556

19 tháng 10 2017

1.Gọi số tự nhiên cần tìm là A

Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)

Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)

Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23

Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1

Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)

                                                   => 2q = 29(p - q) - 23 nhỏ nhất

                                                   => p- q nhỏ nhất

Do đó p - q = 1 => 2q = 29 -23 = 6

                            => q = 3

Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121

2. Số đó phải lớn hơn 10. Ta có:

129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b

61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c

x = 119 : b = 51 : c

119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7

51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17

Mà số đó lớn hơn 10 nên x = 17

Vậy x = 17

2 tháng 6 2016

c1

Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.

Hiệu của 31 và 29:         31 - 29 = 2

Thương của phép chia cho 31 là:

(29-23) : 2 = 3

            (Hoặc. Gọi a là thương lúc này của phép chia cho 31.

                        2 x a + 23 = 29        =>     a = 3)

Số cần tìm là:

31 x 3 + 28 = 121

Đáp số:  121

c2

Bài giải:

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

tk nha mk trả lời đầu tiên đó!!!

2 tháng 6 2016

Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:

                                                    A = 29p + 5 ( p ∈ N )

                                    Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất Do đó p – q = 1

=> 2q = 29 – 23 = 6 => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121 

29 tháng 10 2015

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

Chú ý : dấu (.) là nhân nhé