Tìm a,b,c biết:
a+b=5
a+b+c=12
a+c=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{a}{b}\) = \(\dfrac{3}{5}\) ⇒ a = \(\dfrac{3}{5}\)b; \(\dfrac{b}{c}\) = \(\dfrac{4}{5}\) ⇒ c = b : \(\dfrac{4}{5}\) = \(\dfrac{5}{4}\)b
⇒ a.c = \(\dfrac{3}{5}\)b. \(\dfrac{5}{4}\)b = \(\dfrac{3}{4}\) ⇒ b2.\(\dfrac{3}{4}\) = \(\dfrac{3}{4}\) ⇒ b2 = 1 ⇒ \(\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}a=\dfrac{3}{5}\\a=-\dfrac{3}{5}\end{matrix}\right.\); \(\left[{}\begin{matrix}c=\dfrac{5}{4}\\c=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy các cặp số a;b;c thỏa mãn đề bài là:
(a; b; c) = (-\(\dfrac{3}{5}\); -1; - \(\dfrac{5}{4}\)) ; (\(\dfrac{3}{5}\); 1; \(\dfrac{5}{4}\))
b, a.(a+b+c) = -12; b.(a+b+c) =18; c.(a+b+c) = 30
⇒a.(a+b+c) - b.(a+b+c) + c.(a+b+c) = -12 + 18 + 30
⇒ (a +b+c)(a-b+c) = 0
⇒ a - b + c = 0 ⇒ a + c =b
Thay a + c = b vào biểu thức: b.(a+b+c) =18 ta có:
b.(b + b) = 18
2b.b = 18
b2 = 18: 2
b2 = 9 ⇒ \(\left[{}\begin{matrix}b=-3\\b=3\end{matrix}\right.\)
Thay a + c = b vào biểu thức c.(a + b + c) = 30 ta có:
c.(b+b) = 30 ⇒ 2bc = 30 ⇒ bc = 30: 2 = 15 ⇒ c = \(\dfrac{15}{b}\)
Thay a + c = b vào biểu thức a.(a+b+c) = -12 ta có:
a.(b + b) = -12 ⇒2ab = -12 ⇒ ab = -12 : 2 = - 6 ⇒ a = - \(\dfrac{6}{b}\)
Lập bảng ta có:
b | -3 | 3 |
a = \(-\dfrac{6}{b}\) | 2 | -2 |
c = \(\dfrac{15}{b}\) | -5 | 5 |
Vậy các cặp số a; b; c thỏa mãn đề bài là:
(a; b; c) = (2; -3; -5); (-2; 3; 5)
a. ab=3/5;bc=4/5;ca=3/4
=>(abc)^2=9/25
=>abc=3/5
=> c=1;a=3/4;b=4/5
b. a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30
=>(a+b+c)^2=36
=>a+b+c=6
=> a=-2;b=3;c=5
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
a) a.b= 3/5; b.c=4/5; a.c=3/4
b) a.( a+b+c)=-12
b.( a+b+c )=18
c.( a+b+c)= 30
c) a.b=c
b.c=4.a
a.c=9.b
a,a.b/b.c=a/c=3/4
a/c.a.c=a.a=3/4*3/4
=>a=3/4hoặc-3/4
rồi suy a,b,c
a.( a+b+c)=-12=A
b.( a+b+c )=18=B
c.( a+b+c)= 30=C
A+B+C=(a+b+c)(a+b+c)=36
a+b+c=6hoặc -6
ghép vào A,B,C suy ra a,b,c
c,a.b.b.c.a.c=c.4.a.9.b
a.b.c=4.9=36
a.b=c
=>a.b.c=c.c=36
=>c=6 hoặc -6
=>a,b,c
hồi ôn thi học sinh giỏi chị gặp bài này...đam bảo đúng
a) ab=3/5; bc=4/5; ca=3/4
=> (abc)2 = (3/4).(4/5).(3/4)=9/25
=>abc=3/5
Ta có: abc=3/5
ab=3/5
=> c=1
Ta có: abc=3/5
bc=4/5
=> a=3/4
Ta có: abc=3/5
ca=3/4
=> b=4/5
Vậy a=3/4; b=4/5; c=1
\(a\left(a+b+c\right)=-12\)
\(b\left(a+b+c\right)=18\)
\(c\left(a+b+c\right)=30\)
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\left(a+b+c\right)\left(a+b+c\right)=36\)
\(\left(a+b+c\right)^2=\left(\pm6\right)^2\)
\(a+b+c=\pm6\)
Th1:
\(a+b+c=6\)
\(\left[\begin{array}{nghiempt}a\times6=-12\\b\times6=18\\c\times6=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=-\frac{12}{6}\\b=\frac{18}{6}\\c=\frac{30}{6}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=-2\\b=3\\c=5\end{array}\right.\)
Th2:
\(a+b+c=-6\)
\(\left[\begin{array}{nghiempt}a\times\left(-6\right)=-12\\b\times\left(-6\right)=18\\c\times\left(-6\right)=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=\frac{-12}{-6}\\b=\frac{18}{-6}\\c=\frac{30}{-6}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=2\\b=-3\\c=-5\end{array}\right.\)
Cộng 3 biểu thức đã cho theo vế ta được:
\(2\left(A+B+C\right)=-4+\left(-6\right)+12=2\Leftrightarrow A+B+C=1\)
A+B+C=1 mà A+B=-4 suy ra C=5
Từ đó tính được A=7, B=-11
Vậy \(\hept{\begin{cases}A=7\\B=-11\\C=5\end{cases}}\)
Có: \(\hept{\begin{cases}A+B=-4\\B+C=-6\\C+A=12\end{cases}}\)
\(\Rightarrow2.\left(A+B+C\right)=\left(-4\right)+\left(-6\right)+12\)
\(2.\left(A+B+C\right)=2\)
\(\Leftrightarrow A+B+C=1\)
\(\Leftrightarrow12+B=1\)
\(\Leftrightarrow B=-11\)
\(\Leftrightarrow A-11=-4\)
\(\Leftrightarrow A=7\)
\(\Leftrightarrow C+7=12\)
\(\Leftrightarrow C=5\)
Vậy \(\hept{\begin{cases}A=7\\B=-11\\C=5\end{cases}}\)
(a+b)+(a+c) = 5 +4 =9
hay a +(a+b+c) = 9 ; mà a+b+c =12
=> a +12 = 9 => a =9 -12 = -3
=> a =-3
=> b = 5 -a =5 -(-3) =8
=> c =4 -a =4 -(-3) =7