x^2-xy/3x^2-3xy với( x khác 0 x khác y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(P=\dfrac{4k^2-2k.3k+9k^2}{4k^2+2k.3k+9k^2}=\dfrac{13k^2-6k^2}{13k^2+6k^2}=\dfrac{7k^2}{19k^2}=\dfrac{7}{19}\)
\(a)\) \(\frac{x^2y-xy}{x-1}=xy\)
\(\Leftrightarrow\)\(\frac{xy\left(x-1\right)}{x-1}=xy\)
\(\Leftrightarrow\)\(xy=xy\) ( đpcm )
\(b)\) \(\frac{x^2-y^2}{x^2+xy^2}=\frac{x-y}{x}\)
\(\Leftrightarrow\)\(\frac{\left(x+y\right)\left(x-y\right)}{x^2+xy^2}=\frac{x-y}{x}\)
\(\Leftrightarrow\)\(\frac{x+y}{x^2+xy^2}=\frac{1}{x}\)
\(\Leftrightarrow\)\(x\left(x+y\right)=x^2+xy^2\)
\(\Leftrightarrow\)\(x^2+xy=x^2+xy^2\)
\(\Leftrightarrow\)\(xy=xy^2\)
\(\Leftrightarrow\)\(y=y^2\) ( đề sai hay mình sai =.= )
Chúc bạn học tốt ~
a, \(\frac{x^2y-xy}{x-1}=\frac{xy\left(x-1\right)}{x-1}=xy\)
b,Sửa đề \(\frac{x^2-y^2}{x^2+xy}=\frac{x-y}{x}\)
\(\frac{x^2-y^2}{x^2+xy}=\frac{x^2-xy+xy-y^2}{x\left(x+y\right)}=\frac{x\left(x-y\right)+y\left(x-y\right)}{x\left(x+y\right)}=\frac{\left(x+y\right)\left(x-y\right)}{x\left(x+y\right)}=\frac{x-y}{x}\)
\(A=\dfrac{2x}{x\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3}{x-y}\)
\(=\dfrac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{2x-2y+6x-3x-3y}{\left(x-y\right)\left(x+y\right)}=\dfrac{5\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{5}{x+y}\)