\(A=\left(\frac{3}{5}\right)^4\cdot\left(\frac{5}{3}\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{11}{12}:\frac{44}{16}\right).\left(\frac{-1}{3}+\frac{1}{2}\right)\) \(=\left(\frac{11}{12}.\frac{16}{44}\right).\left(\frac{-2}{6}+\frac{3}{6}\right)\) \(=\frac{1}{3}.\frac{1}{6}\) \(=\frac{1}{18}\)
b) \(\frac{\left(-5\right)^2.\left(-5\right)^3.16}{5^4.\left(-2\right)^4}\) \(=\frac{\left(-5\right)^5.2^4}{5^4.\left(-2\right)^4}\) \(=5\) (Có sửa đề lại, nếu có sai thì ib mình sửa lại nhé!)
c) \(7,5:\left(\frac{-5}{3}\right)+2\frac{1}{2}:\left(\frac{-5}{3}\right)\) \(=\frac{15}{2}.\left(\frac{-3}{5}\right)+\frac{5}{2}.\left(\frac{-3}{5}\right)\) \(=\frac{-3}{5}.\left(\frac{15}{2}+\frac{5}{2}\right)\)
\(=\frac{-3}{5}.10\) \(=-6\)
d) \(\left(\frac{-1}{2}+\frac{1}{3}\right).\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right):\frac{5}{4}\) \(=\left(\frac{-1}{2}+\frac{1}{3}\right).\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right).\frac{4}{5}\)
\(=\frac{4}{5}.\left(\frac{-1}{2}+\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\) \(=\frac{4}{5}.\left(\frac{0}{2}+1\right)\) \(=\frac{4}{5}.1=\frac{4}{5}\)
a) (1112:4416).(−13+12)(1112:4416).(−13+12) =(1112.1644).(−26+36)=(1112.1644).(−26+36) =13.16=13.16 =118=118
b) (−5)2.(−5)3.1654.(−2)4(−5)2.(−5)3.1654.(−2)4 =(−5)5.2454.(−2)4=(−5)5.2454.(−2)4 =5=
c) 7,5:(−53)+212:(−53)7,5:(−53)+212:(−53) =152.(−35)+52.(−35)=152.(−35)+52.(−35) =−35.(152+52)=−35.(152+52)
=−35.10=−35.10 =−6=−6
d) (−12+13).45+(23+12):54(−12+13).45+(23+12):54 =(−12+13).45+(23+12).45=(−12+13).45+(23+12).45
=45.(−12+13+23+12)=45.(−12+13+23+12) =45.(02+1)=45.(02+1) =45.1=45
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)
\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)
\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)
~ Hok tốt ~
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
Ta có
\(A=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{3^6}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{729}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)=0\)
vì 729/9=81
Vậy A=0
k me đi
\(\left(\frac{3}{4}-81\right).\left(\frac{3^2}{5}-81\right).\left(\frac{3^3}{6}-81\right).\left(\frac{3^4}{7}-81\right).\left(\frac{3^5}{8}-81\right).\left(\frac{729}{9}-81\right)....\left(\frac{3^{2013}}{2016}-81\right)\)
=>....................................................................................................................(81-81)..............................................
=>.....................................................................................................................0.....................................................
=>A=0
( 1/7 . x - 2/7 ) . ( -1.5 . x + 3/5 ) . ( 1/ 3 . x + 4/3) + 0
<=> +) 1/7 . x - 2/7 = 0 +) (- 1 / 5) . x +3/5 = 0 +) 1/ 3 . x + 4/ 3 = 0
x = 2 x = 3 x = 4
Vậy x = 2 : x = 3 ; x=4
\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)
\(=-\frac{29}{16}:\frac{-29}{16}=1\)
\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)
\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)
\(=\frac{729}{64}:\frac{729}{64}=1\)
\(A=\left(\frac{3}{5}\right)^4.\left(\frac{5}{3}\right)^3\)
\(A=\frac{3^4.5^3}{5^4.3^3}\)
\(A=\frac{3}{5}\)
\(A=\frac{3^4}{5^4}.\frac{5^3}{3^3}=\frac{3}{5}\)