\(5x^3+6x^2+12x+8=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+5x^2-12x=0\)
\(\Rightarrow x\cdot\left(2x^2+5x-12\right)=0\)
\(\Rightarrow x\cdot\left(2x^2-3x+8x-12\right)=0\)
\(\Rightarrow x\cdot\left[x\cdot\left(2x-3\right)+4\cdot\left(2x-3\right)\right]=0\)
\(\Rightarrow x\cdot\left(2x-3\right)\cdot\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\x+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=-4\end{cases}}\)
\(x^2-5x-24=0\)
\(\Rightarrow x^2+3x-8x-24=0\)
\(\Rightarrow x\cdot\left(x+3\right)-8\cdot\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\cdot\left(x-8\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+3=0\\x-8=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=8\end{cases}}}\)
\(x^2-6x+8=0\)
\(\Rightarrow x^2-2x-4x+8=0\)
\(\Rightarrow x\cdot\left(x-2\right)-4\cdot\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\cdot\left(x-4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)
\(pt\Leftrightarrow x^3+6x^2+12x+8=-4x^3\)
<=> \(\left(x+2\right)^3=-4x^3\)
<=> \(x+2=\sqrt[3]{-4}x\)
<=> \(x\left(1-\sqrt[3]{-4}\right)=-2\)
<=> \(x=\frac{2}{\sqrt[3]{-4}-1}\)
\(pt\Leftrightarrow x^3+3.x^2.2+3.x.2^2+2^3=-4x^3\Leftrightarrow\left(x+2\right)^3=-4x^3\Leftrightarrow x+2=x\sqrt[3]{-4}\Leftrightarrow x-x\sqrt[3]{-4}=-2\Leftrightarrow x\left(1-\sqrt[3]{-4}\right)=-2\Leftrightarrow x=\frac{2}{\sqrt[3]{-4}-1}\)
Mình cũng giải được như các bạn nhưng thầy bảo có 3 nghiệm
a) 5x +3=2x-8 <=>5x-2x=-8-3 <=>3x=-11 <=> x=\(\dfrac{-11}{3}\)
b)6x-3(x+2)=5x+3<=> (6-3-5)x-9=0 <=> x=\(\dfrac{-9}{2}\)
c) (3x-9)(5x+10)=0<=> \(\left[{}\begin{matrix}3x-9=0\\5x+10=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d)8x(x+2)+16(x+2)=0<=>(x+2)(8x+16)=0<=>\(\left[{}\begin{matrix}x=-2\\x=-2\end{matrix}\right.\)
e)x2 -12x+35=0 <=>\(\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
\(x^2-5x-24=0\)
\(x^2+3x-8x-24=0\)
\(x\cdot\left(x+3\right)-8\cdot\left(x+3\right)=0\)
\(\left(x+3\right)\cdot\left(x-8\right)=0\)
\(\hept{\begin{cases}x+3=0\\x-8=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=8\end{cases}}}\)
\(x^2-6x+8=0\)
\(x^2-2x-4x+8=0\)
\(x\cdot\left(x-2\right)-4\cdot\left(x-2\right)=0\)
\(\left(x-2\right)\cdot\left(x-4\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)
\(2x^2+5x^2-12x=0\)
\(\Leftrightarrow7x^2-12x=0\)
\(\Leftrightarrow x\left(7x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{12}{7}\end{cases}}\)
\(5x^3+6x^2+12x+8=0\)
\(\Leftrightarrow4x^3+\left(x^2+6x+12x+8\right)=0\)
\(\Leftrightarrow4x^3+\left(x+2\right)^3=0\)
\(\Leftrightarrow\left(x+2\right)^3=-4x^3\)
\(\Leftrightarrow x+2-\sqrt[3]{4x}=0\)
\(\Leftrightarrow x\left(1-\sqrt[3]{4}\right)=0\)
\(\Leftrightarrow x=-\frac{2}{1-\sqrt[3]{4}}=\frac{2}{\sqrt[3]{4}-1}\)
bài này chắc là xét mấy TH ta ??? nhưng tìm 1 KQ dễ lắm bn
\(5x^3+6x^2+12x+8=0\)
\(5.x.x.x+6x.x+12x=-8\)
\(23x=-8\)
\(x=-\frac{8}{23}\)