Tìm x,y,z biết: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
và 2x2+2y2+z2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\Leftrightarrow3.\frac{x}{8}=3.\frac{y}{64}=3.\frac{z}{216}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{64}=\frac{z}{216}\)
\(\Leftrightarrow\frac{x^2}{64}=\frac{y^2}{4096}=\frac{z^2}{46656}\)
\(\Leftrightarrow\frac{2x^2}{128}=\frac{2y^2}{8192}=\frac{z^2}{46656}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
........
3x/8 = 3y/64 = 3z/216
suy ra (x/2)3 = (y/4)3 = (z/6)3
\(\Rightarrow\) x/2 = y/4 = z/6
\(\Rightarrow\) 2x2/8= 2y2/32 = z2/36 = (2x2+2y2-z2)/(8+32-36) = 1/4 (t/c dãy tỉ số bằng nhau)
Cho ta:
2x2/8 = 1/4 \(\Rightarrow\)2x2 =2 \(\Rightarrow\)x = +_1
2y2/32 = 1/4 \(\Rightarrow\)2y2= 8 \(\Rightarrow\)y =+_2
Đ/s:...
Nếu đúng tk cho mik nha!!!! Làm khổ lém đó T-T
Em làm như sau nhé ;)
Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{64}=\frac{z}{216}\Rightarrow\frac{x^2}{\left(8\right)^2}=\frac{y^2}{\left(64\right)^2}=\frac{z^2}{\left(216\right)^2}\)
\(\Rightarrow\frac{2x^2}{2.8^2}=\frac{2y^2}{2.64^2}=\frac{z^2}{216^2}\)
\(\Leftrightarrow\frac{2x^2+2y^2-z^2}{2.8^2+2.64^2-216^2}=\frac{1}{-38336}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{1}{-38336}\Rightarrow x=-4792\\\frac{y}{64}=\frac{-1}{-38336}\Rightarrow y=-599\\\frac{z}{216}=\frac{-1}{38336}\Rightarrow z=-\frac{4792}{27}\end{cases}}\)
\(\Rightarrow\left(x;y\right)\in\left\{-4792;-599;-\frac{4792}{27}\right\}\)
Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Leftrightarrow x=\frac{y}{8}=\frac{z}{27}\)
\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)Thay vào ta được:
\(2x^2+2\left(8x\right)^2-\left(27x\right)^2=1\)
\(\Leftrightarrow-559x^2=1\)
\(\Leftrightarrow x^2=\frac{-1}{559}\)
\(\Leftrightarrow\)Vô nghiệm.
Phạm Nguyệt Minh Băng làm sai từ dòng 4 trên xuống
Bài giải
\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Rightarrow\text{ }x=\frac{y}{8}=\frac{z}{27}\)\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)
Thay vào đẳng thức ta có :
\(2x^2+2\left(8x\right)^2+\left(27x\right)^2=1\)
\(2x^2+128x^2+729x^2=1\)
\(x^2\left(2+128+729\right)=1\)
\(859x^2=1\)
\(x^2=\frac{1}{859}\)
\(\Rightarrow\text{ }x\in\varnothing\)