K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

8 tháng 11 2017

c, n-3 chia hết cho 15

=> n-3 thuộc Ư(15)={1;3;5;15}

=> n={4;6;8;18}

8 tháng 11 2017

a, 5n+9 chia hết cho n+1

<=> 5n+1+9 chia hết cho n+1

Mà 5n+1 chi hết cho n+1 

=> 9 chia hết cho n+1

<=> n+1 thuộc Ư(9)={1;3}

=> n={0;2}

27 tháng 3 2017

\(n^2+5n+9⋮n+3\Rightarrow n.n+3n+2n+9⋮n+3\)

\(\Rightarrow n\left(n+3\right)+2n+9⋮n+3\)

\(n\left(n+3\right)⋮n+3\Rightarrow2n+9⋮n+3\)

Mà : \(n+3⋮n+3\Rightarrow2\left(n+3\right)⋮n+3\Rightarrow2n+6⋮n+3\)

\(\Rightarrow\left(2n+9\right)-\left(2n+6\right)⋮n+3\)

\(\Rightarrow2n+9-2n-6⋮n+3\Rightarrow3⋮n+3\)

\(\Rightarrow n+3\in\left\{\pm1;\pm3\right\}\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)

Vậy \(n\in\left\{-2;-4;0;-6\right\}\)

3 tháng 12 2015

5n+9 chia hết cho n-3

5n-15+26 chia hết cho n-3

5(n-3)+26 chia hết cho n-3

=>26 chia hết cho n-3 hay n-3EƯ(26)={1;2;13;26}

=>nE{4;5;16;29}

Vậy nE{4;5;16;29} thì 5n+9 chia hết cho n-3

3 tháng 12 2015

5n+9 chia hết cho n-3

5n-15+26 chia hết cho n-3

5(n-3)+26 chia hết cho n-3

=>26 chia hết cho n-3 hay n-3EƯ(26)={1;2;13;26}

=>nthuộc{4;5;16;29}

Vậy n thuộc{4;5;16;29} thì 5n+9 chia hết cho n-3

tick nhé

25 tháng 10 2016

a) n + 3 chia hết cho n

Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n

Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }

b) 35 - 12n chia hết cho n ( n < 3 )

Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n

từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }

Mà n < 3 nên n = 1

Vậy n = 1

c) 16 - 3n chia hết cho n + 4 ( n < 6 )

theo bài ra ta có : 

16 - 3n chia hết cho n + 4

28 . ( 3n + 12 ) chia hết cho n + 4

28 - 3 . ( n + 4 ) chia hết cho n + 4

vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4

Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }

mà n < 6 nên n = { 1 ; 2 ; 4 }

vậy n = { 1 ; 2 ; 4 }

d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )

ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )

Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n

=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n

45 + 4 chia hết cho 9 - 2n

49 chia hết cho 9 - 2n

để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n

Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }

Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }

\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)

19 tháng 5 2017

a) n + 3 chia hết cho n ( n thuộc N )

Ta có : n chia hết cho n

           n + 3 chia hết cho n

=> 3 chia hết cho n

=> n thuộc Ư ( 3 )

=> n thuộc { 1 ; 3 }