x2-7x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)
\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)
Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)
\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)
\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)
\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)
b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)
\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)
\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)
\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)
Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)
\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)
\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)
\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt
ý bạn là như thế này đúng không ạ:
a/ \(x^2-6x+5=0\)
\(x^2-5x-x+5=0\)
\(x\left(x-5\right)-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}x-5=0\rightarrow x=5\\x-1=0\rightarrow x=1\end{cases}}\)
b/\(2x^2+7x+9=0\)
?!
c/ \(4x^2-7x+3=0\)
\(4x^2-4x-3x+3=0\)
\(4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x-3\right)=0\)
\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\4x-3=0\Rightarrow x=\frac{3}{4}\end{cases}}\)
d/ \(2\left(x+5\right)=2x+10\)
-,- mik ko rõ đề ạ, sai thì ibox ạ.Cảm ơn
a) x 2 – 7 x + 12 = 0
Có a = 1; b = -7; c = 12
⇒ Δ = b 2 – 4 a c = ( - 7 ) 2 – 4 . 1 . 12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.
b) x2 + 7x + 12 = 0
Có a = 1; b = 7; c = 12
⇒ Δ = b2 – 4ac = 72 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Lời giải:
$x^2-7x-8=0$
$\Leftrightarrow (x^2+x)-(8x+8)=0$
$\Leftrightarrow x(x+1)-8(x+1)=0$
$\Leftrightarrow (x+1)(x-8)=0$
$\Rightarrow x+1=0$ hoặc $x-8=0$
$\Rightarrow x=-1$ hoặc $x=8$
a, \(x^4-x^2-2=0\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\Leftrightarrow\left(x^2+1>0\right)\left(x^2-2\right)=0\Leftrightarrow x=\pm\sqrt{2}\)
b, \(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\Leftrightarrow x^2\left(x+1\right)^2=0\Leftrightarrow x=0;x=-1\)
c, \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1>0\right)=0\Leftrightarrow x=1\)
d, \(\Leftrightarrow6x^2-3x-4x+2=0\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\Leftrightarrow x=\dfrac{2}{3};x=\dfrac{1}{2}\)
a)
/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)