Trong mặt phẳng hệ trục tọa độ Oxy , cho tam giác ABC có A(1;-3), B(4;2), C(-2;-1) |
1) Viết phương trình tổng quát của đường thẳng A, qua A và vuông góc BC.
2) Viết phương trình tổng quát của đường thắng A, qua B và vuông góc AC.
3) Viết phương trình tổng quát của đường thẳng A, là đường trung trực của đoạn thẳng AB .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do C thuộc Ox nên tọa độ có dạng: \(C\left(x;0\right)\)
Do trọng tâm G thuộc Oy \(\Rightarrow x_G=0\)
Mà \(x_A+x_B+x_C=3x_G\)
\(\Rightarrow1+\left(-3\right)+x=3.0\)
\(\Rightarrow x=2\)
\(\Rightarrow C\left(2;0\right)\)

vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1

Gọi G là trọng tâm tam giác ABC
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất
\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung
\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)
Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

Chọn A.
Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.
B(4;5), C(-3;2)
Phương trình đường cao AH đi qua A(2;-1) nhận là VTPT là:
7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0
Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.
Lời giải:
1.
Vì ĐT cần tìm vuông góc với $BC$ nên nhận \(\overrightarrow{BC}=(-6,-3)\) là vecto pháp tuyến
PTĐT có dạng: $-6(x-1)+(-3)(y+3)=0$
$\Leftrightarrow 2x+y=-1$
2. Vì ĐT cần tìm vuông góc với $AC$ nên nhận $\overrightarrow{AC}=(-3; 2)$ là vecto pháp tuyến
PTĐT có dạng $-3(x-4)+2(y-2)=0$
$\Leftrightarrow -3x+2y=-8$
3. ĐT là trung trực của đoạn thẳng $AB$ nên:
Nhận $\overrightarrow{AB}=(3;5)$ là vecto pháp tuyến.
Đi qua trung điểm $(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2})=(\frac{5}{2};\frac{-1}{2})$
PTĐT có dạng: $3(x-\frac{5}{2})+5(y+\frac{1}{2})=0$