Tìm x
\(\frac{-22}{15}x+\frac{1}{3}=|\frac{-2}{3}+\frac{1}{5}|\)\(|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{2}{3}+\frac{2}{5}\right|\)
\(\Rightarrow-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{4}{15}\right|\).
\(\Rightarrow-\frac{4}{15}=\pm\left(-\frac{22}{15}x+\frac{1}{3}\right)\)
\(\Rightarrow\orbr{\begin{cases}-\frac{22}{15}x+\frac{1}{3}=-\frac{4}{15}\\-\left(-\frac{22}{15}x+\frac{1}{3}\right)=-\frac{4}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{22}\\x=\frac{1}{22}\end{cases}}\)
༃•๖ۣۜLãσ ๖ۣۜHạ¢ Em bị nhầm dạng toán này rồi. Khi ẩn x ở trong dấu giá trị tuyệt đối mình mới chia hai trường hợp em nhé!
Bài giải:
\(-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{4}{15}\right|\)
\(-\frac{22}{15}x+\frac{1}{3}=\frac{4}{15}\)
\(-\frac{22}{15}x=\frac{4}{15}-\frac{1}{3}\)
\(-\frac{22}{15}x=-\frac{1}{15}\)
\(\frac{22x}{15}=\frac{1}{15}\)
\(x=\frac{1}{22}\)
\(\frac{22}{15}x+\frac{1}{3}=\left|\frac{-2}{3}+\frac{1}{5}\right|\)
\(\Leftrightarrow\frac{22}{15}x+\frac{1}{3}=\left|\frac{-7}{15}\right|\)
\(\Leftrightarrow\frac{22}{15}x+\frac{1}{3}=\frac{7}{15}\)
\(\Rightarrow\frac{22}{15}x=\frac{7}{15}-\frac{1}{3}=\frac{2}{15}\)
\(\Rightarrow x=\frac{2}{15}:\frac{22}{15}\)
\(\Rightarrow x=\frac{1}{11}\)
Vậy ....
Ta có: \(-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{2}{3}+\frac{1}{5}\right|\)
hay \(-\frac{22}{15}x=\frac{7}{15}-\frac{1}{3}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{2}{15}:\frac{-22}{15}=\frac{2}{15}\cdot\frac{15}{-22}=\frac{-2}{22}=\frac{-1}{11}\)
Vậy: \(x=\frac{-1}{11}\)
\(-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{2}{3}+\frac{1}{5}\right|\)
\(\Rightarrow-\frac{22}{15}x+\frac{1}{3}=\left|-\frac{7}{15}\right|\)
\(\Rightarrow-\frac{22}{15}x+\frac{1}{3}=\frac{7}{15}\)
\(\Rightarrow-\frac{22}{15}x=\frac{7}{15}-\frac{1}{3}\)
\(\Rightarrow-\frac{22}{15}x=\frac{2}{15}\)
\(\Rightarrow x=\frac{2}{15}:\left(-\frac{22}{15}\right)\)
\(\Rightarrow x=-\frac{1}{11}\)
Vậy \(x=-\frac{1}{11}.\)
Chúc bạn học tốt!
Đặt: \(\left\{{}\begin{matrix}a=\sqrt{x}+1\\b=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1-b}{b}=\frac{22}{15}\\\frac{3}{a}+\frac{5+b}{b}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1}{b}+1=\frac{22}{15}\\\frac{3}{a}+\frac{5}{b}+1=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1}{b}=\frac{7}{15}\\\frac{3}{a}+\frac{5}{b}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{6}{a}-\frac{3}{b}=\frac{7}{5}\\\frac{6}{a}+\frac{10}{b}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{6}{a}-\frac{3}{b}=\frac{7}{5}\\\frac{13}{b}=\frac{13}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=\sqrt{x}+1\\5=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5-x=1\end{matrix}\right.\)
Vậy pt có \(n_0\) \(S=\left\{4;1\right\}\)
a, (x-15):5+22=24
( x - 15 ) : 5 = 2
x-15 = 10
x = 25
-22/15x + 1/3 = 7/15
-22/15x = 7/15 - 1/3
-22/15x = 2/15
x =2/15 : ( -22/15)
x = -1/11
~ chúc bn học tốt~