Tính nhanh: M=( a^6 - 1) : (a^2 - 1)
tui đang cần gấp,giúp tui nhânhâ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a^6-1}{a^2-1}=\frac{\left(a^2\right)^3-1}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a^2-1\right)\left[\left(a^2\right)^2+a^2\cdot1+1^1\right]}{\left(a-1\right)\left(a+1\right)}\)
\(M=\frac{\left(a-1\right)\left(a+1\right)\left(a^4+a^2+1\right)}{\left(a-1\right)\left(a+1\right)}=a^4+a^2+1\)
A = 100 + 98 + 96 + ... + 2 - 97 - 95 - ... - 1
A = 100 + (98 - 97) + (96 - 95) + ... + (2 - 1)
A = 100 + 1 + 1 + ... + 1 (49 số 1)
A = 100 + 49 = 149
\(a,\dfrac{1}{2}-\dfrac{1}{3}-\left(-\dfrac{5}{4}\right)=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{5}{4}=\dfrac{1\times6-1\times4+5\times3}{12}=\dfrac{6-4+15}{12}=\dfrac{17}{12}\\ b,\dfrac{5}{4}-\dfrac{1}{2}-\dfrac{7}{8}=\dfrac{5\times2-1\times4-7}{8}=\dfrac{10-4-7}{8}=-\dfrac{1}{8}\\ c,\dfrac{1}{5}-\dfrac{1}{2}+\dfrac{9}{10}=\dfrac{1\times2-1\times5+9}{10}=\dfrac{2-5+9}{10}=\dfrac{6}{10}=\dfrac{3}{5}\\ d,\dfrac{5}{4}-\dfrac{1}{3}+\dfrac{7}{6}=\dfrac{5\times3-1\times4+7\times2}{12}=\dfrac{15-4+14}{12}=\dfrac{25}{12}\)
1−199 x 1 − 1100....1−120061-199 � 1 - 1100....1-12006
=(9999−1999999-199)x(100100−1100100100-1100)....(20062006−1200620062006-12006) = 9899x99100....20052006=982006
NÈ EM
1.Tính:
Q=14.29+14.71+(1+2+3+4+...+99)(199199.198-198198.199)
TUI ĐANG CẦN GẤP LÀM ƠN GIÚP TUI ĐI !!!!
Q = 14 . 29 + 14 . 71 + ( 1 + 2 + 3 + ... + 99)(199199 . 198 - 198198 . 199)
= 14 . ( 29 + 71 ) + ( 1 + 2 + ... + 99)( 199 . 1001 . 198 - 198 . 1001 . 199 )
= 14 . 100 + ( 1 + 2 + ... + 99) . 0
= 1400 + 0
= 1400
\(Q=14.29+14.71+\left(1+2+3+4+....+99\right).\left(199199.198-198198.199\right)\)
\(=14.\left(29+71\right)+\left(1+2+3+4+..+99\right).\left(199.101.198-198.1001.199\right)\)
\(=14.100+\left(1+2+3+4+...+99\right).0\)
\(=1400+0\)
\(=1400\)
\(1,V_{O_2}=\dfrac{5,6}{32}.22,4=3,92(l)\\ 2,m_{O_2}=\dfrac{2,26}{22,4}.32\approx 3,23(g)\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có \(a^6-1=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(a^2-1=\left(a-1\right)\left(a+1\right)\)
=>\(\left(a^6-1\right):\left(a^2-1\right)\)=\(\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(a^4-a^2+1\)