tính:(x2-y2+6x+9):(x+y+3)
giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$
b: x,y tỉ lệ nghịch
=>x1*y1=x2*y2
=>x1/y2=x2/y1=k
=>x1=y2*k; x2=y1*k
x1+x2=6
=>k*(y1+y2)=6
=>\(y_1+y_2=\dfrac{6}{k}\)
c: x1/y2=x2/y1
=>x1/x2=y2/y1
=>x1/3=y2/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{3}=\dfrac{y_2}{12}=\dfrac{x_1+2y_2}{3+2\cdot12}=\dfrac{18}{27}=\dfrac{2}{3}\)
=>\(x_1=2;y_2=8\)
Phân tích số bị chia thành nhân tử, trong đó có nhân tử là số chia.
(x2 – y2 + 6x + 9) : (x + y + 3)
(Có x2 + 6x + 9 là hằng đẳng thức)
= (x2 + 6x + 9 – y2) : (x + y + 3)
= [(x2 + 2.x.3 + 32) – y2] : (x + y + 3)
= [(x + 3)2 – y2] : (x + y + 3)
(Xuất hiện hằng đẳng thức (3))
= (x + 3 + y)(x + 3 – y) : (x + y + 3)
= x + 3 – y = x – y + 3
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
Ta có: \(S=x^2+2xy+y^2-6x-6y+25\)
\(=\left(x+y\right)^2-6\left(x+y\right)+25\)
\(=\left(x+y\right)\left(x+y-6\right)+25\)
\(=3\cdot\left(3-6\right)+25\)
=-9+25
=16
Lời giải:
a.
$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=[9^2-2.18]^2-2.18^2=1377$
Nếu $x\geq y$ thì:
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$
$=\sqrt{9^2-4.18}(9^2-18)=189$
Nếu $x< y$ thì $x^3-y^3=-189$
b.
$A=(x+y)^2-6(x+y)+y-5$
$=(-9)^2-6(-9)+y-5=130+y$
Chưa đủ cơ sở để tính biểu thức.
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=\dfrac{-3}{5}\cdot27=-\dfrac{81}{5}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)
\(\left(x^2-y^2+6x+9\right):\left(x+y+3\right)\)
\(=[\left(x^2+2x.3+3^2\right)-y^2]:\left(x+y+3\right)\)
\(=[\left(x+3\right)^2-y^2]:\left(x+y+3\right)\)
\(=\left(x+3+y\right).\left(x+3-y\right):\left(x+y+3\right)\)
\(=\left(x+3-y\right)\)