K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(đpcm)

b) Ta có: \(-x^2+2x-4=-\left(x^2-2x+4\right)=-\left(x^2-2x+1+3\right)=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3< 0\forall x\)

hay \(-x^2+2x-4< 0\forall x\)(đpcm)

25 tháng 2 2020

yeu

22 tháng 10 2021

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

11 tháng 12 2019

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)

10 tháng 8 2023

Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)

Nên: \(x^2-x+1>0\)

10 tháng 8 2023

\(x^2-x+1\)

\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )

31 tháng 10 2017

a)\(x^2-4xy+4y^2+3\)

\(=\left(x-2y\right)^2+3\)

Do \(\left(x-2y\right)^2\ge0\forall x,y\)

\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)

\(\left(x-2y\right)^2+3>0\forall x,y\)

=> Đpcm

b)\(2x-2x^2-1\)

\(=-x^2-x^2+2x-1\)

\(=-x^2-\left(x-1\right)^2\)

\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)

=> đpcm

Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.

Chúc bạn học tốt!^^

31 tháng 10 2017

sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0