Tìm x biết:
|5x-3|>=7
>= là dấu lớn hơn hoặc bằng nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét vế trái ta có (nhân vào )
a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c >= 9
<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9
áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được
3 +2 +2+2 >=9
=> đpcm
ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !
vì a/b +b/a >=2 nên ta xét hiệu:
a/b + b/c - 2 >= 0
ta quy đồng mẫu các phân số :
<=> a2 /ab + b2/ab - 2ab/ab >= 0
<=> (a2 + b2 - 2ab) / ab = (a-b)2 /ab >=0
dấu = xảy ra khi a-b =0 <=> a=b
nên a/b + b/a - 2 >=0
<=> a/b + b/a >= 2 dấu = xảy ra khi a=b
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
\(|5x-3|>7\Rightarrow\orbr{\begin{cases}5x-3>7\\5x-3< -7\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< \frac{-4}{5}\end{cases}}}\)
\(\left|5x-3\right|\ge7\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3\ge7\\5x-3\ge-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x\ge10\\5x\ge-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\ge-\frac{4}{5}\end{cases}}\)
Vạy....
\(|5x-3|\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc \(-\left(5x-3\right)\ge7\)
\(\Rightarrow5x\ge10\) hoặc \(-5x\ge4\)
\(\Rightarrow x\ge2\) hoặc \(x\ge-\frac{4}{5}\)
Kết luân : \(x\ge2\)