Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn cố định (O;R) trong đó cạnh BC cố định , góc BAC có số đo bằng \(\alpha\).Gọi H là trực tâm của tam giác ABC ,I và J lần lượt là tâm cảu các đường tròn ngocij tiếp các tam giác BHC và AHC
a) Tính số đo góc BHC theo \(\alpha\)( câu này theo mình là bằng 180-\(\alpha\))
b) Chứng minh rằng góc OIC =\(\alpha\)
c) Chứng minh rằng I cố định và J nằm trên 1 đường tròn cố định
d) Gọi N là giao điểm của BJ và AI . Xác định rõ vị trí của N trên AI
A B C O J I N H M P
Gọi P ; M lần lượt là giao điểm của CH và BH với AB và AC
a) Ta có:^CPA = ^BMA = 90o => ^HPA = ^HMA = 90o => ^HPA + ^HMA = 180o
=> Tứ giác HPAM nội tiếp
=> ^PAM + ^PHM = 180o
=> ^BHC = ^PHM = 180o - ^PAM =180o - \(\alpha\)
b) I là tâm đường tròn ngoại tiếp \(\Delta\)HBC
=> IB = IH = IC
=> \(\Delta\)IBH và \(\Delta\)IIHC cân tại I
=> ^IBH = ^IHB và ^ICH = ^IHC
=> ^IBH + ^ICH = ^IHB + ^IHC = ^BHC = \(180^o-\alpha\)
=> ^BIC = 360o - ^IBH - ^ICH - ^BHC = \(2\alpha\)
Ta lại có ^BOC = 2.^BAC = \(2\alpha\) ( góc ở tâm và góc nội tiếp cùng chắn cung BC)
=> ^BIC = ^BOC (1)
Mặt khác: OB = OC; IB = IC
=> OI là đường trung trực của BC (2)
Từ (1) ; (2) => O; I nằm khác phía so với BC
Mà \(\Delta\)BIC cân => IO là đường phân giác ^BIC
=> OIC = \(\frac{1}{2}\).^BIC = \(\alpha\)
c) Từ (b) => ^BIO = ^CIO = ^BOI = ^COI
=> BOCI là hình bình hành có OI vuông BC
=> BOCI là hình thoi
mà B; C; O cố định => I cố định
Tương tự ta cungc chứng minh được: OCJA là hình thoi
=> CJ = CO = R mà C; O cố định
=> J nằm trên đường tròn tâm C bán kính R cố định
d) AJCO là hình thoi => AJ // = OC
OCIB là hình thoi => OC // = BI
=> AJ //=BI
=> AJIB là hình bình hành có hai đường chéo AI; BJ cắt nhau tại N
=> N là trung điểm của AI