K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Từ \(0\le a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)\(\Rightarrow a+b+c+3\le3c+6\)

\(\Rightarrow a+b+c\le3c+3\)

Mà a+b+c=1

\(\Rightarrow1\le3c+3\)

\(\Rightarrow-2\le3c\)

\(\Rightarrow\frac{-2}{3}\le c\)

Để c nhỏ nhất thì c chỉ có thể bằng \(\frac{-2}{3}\)

10 tháng 2 2017

pạn vào google là sẽ biết cách làm và đáp án lun

24 tháng 10 2019

Ta có: \(a\le b+1\le c+2\)

\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)

\(\Rightarrow a+b+c+3\le3c+6.\)

\(a+b+c=1\)

\(\Rightarrow1+3\le3c+6\)

\(\Rightarrow4\le3c+6\)

\(\Rightarrow-2\le3c\)

\(\Rightarrow-\frac{2}{3}\le c.\)

Hay \(c\ge-\frac{2}{3}\)

Dấu " = " xảy ra khi:

\(c=-\frac{2}{3}.\)

Vậy \(MIN_c=-\frac{2}{3}.\)

Chúc bạn học tốt!

TL
24 tháng 10 2019

Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2

=>0≤4≤3c+6(vì a+b+c=1)

Hay 3c≥-2=>c≥-2/3.

Vậy GTNN của c là:-2/3 khi đó a+b=5/3.

NV
29 tháng 5 2020

\(0\le a\le1\Rightarrow a\left(1-a\right)\ge0\Rightarrow a^2\le a\)

Tương tự: \(b\left(1-b\right)\ge0\Rightarrow b^2\le b\) ; \(c\left(1-c\right)\ge0\Rightarrow c^2\le c\)

Cộng vế với vế:

\(a^2+b^2+c^2\le a+b+c=2\)

\(A_{max}=2\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

13 tháng 6 2017

bài này điểm rơi hơi thộn, mò được ngay thì hơi khó :))

Áp dụng BĐT AM-GM ta có:

\(b^2\left(c-b\right)=\frac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\frac{1}{2}\left(\frac{b+b-2c-2b}{3}\right)^3=\frac{4c^3}{27}\)

Và \(a^2\left(b-c\right)\le0\). Khi đó 

\(Q\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2-\frac{23}{27}c^3=c^2\left(1-\frac{23}{27}\cdot c\right)\)

\(=\frac{54^2}{23^2}c^2\left(1-\frac{23}{27}c\right)\le\frac{1}{3^3}\cdot\frac{54^2}{23^2}=\frac{108}{529}\)

Đẳng thức xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

13 tháng 6 2017

à đề là GTLN mới đúng nhé :))

NV
21 tháng 7 2020

Do \(\left\{{}\begin{matrix}a;b;c\ge1\\a+b+c=4>3\end{matrix}\right.\) \(\Rightarrow abc>1\)

\(\Rightarrow P=log_2abc\) đồng biến theo \(abc\Rightarrow P_{min}\) khi \(Q=abc\) đạt min

Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x+y+z=1\end{matrix}\right.\)

\(Q=\left(x+1\right)\left(y+1\right)\left(z+1\right)=1+xyz+x+y+z+xy+yz+zx\)

\(Q=2+xyz+xy+yz+zx\ge2+xy+yz+zx\ge2\)

\(\Rightarrow Q_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(1;1;2\right)\) và hoán vị

\(\Rightarrow P_{min}=log_22=1\) khi \(\left(a;b;c\right)=\left(1;1;2\right)\) và hoán vị