K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-8x+7< 0\\x^2-8x+12>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1< x< 7\\\left[{}\begin{matrix}x< 2\\x>6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1< x< 2\\6< x< 7\end{matrix}\right.\)

8 tháng 4 2017

a) 6x + < 4x + 7 <=> 6x - 4x < 7 - <=> x <

< 2x +5 <=> 4x - 2x < 5 - <=> x <

Tập nghiệm của hệ bất phương trình:

Y = = .

b) 15x - 2 > 2x + <=> x >

2(x - 4) < <=> x < 2

Tập nghiệm S = ∩ (-∞; 2) =


25 tháng 11 2023

a:

ĐKXĐ: y+1>=0

=>y>=-1

 \(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(x^2-2x\right)+2\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7\left(x^2-2x\right)=-7\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-2x=-1\\3\cdot\left(-1\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-2x+1=0\\2\sqrt{y+1}=-3+7=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\sqrt{y+1}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\left(nhận\right)\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\cdot\sqrt{\left(2x-2\right)^2}+5\cdot\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}20\left|x-1\right|-12\left|y+2\right|=28\\20\left|x-1\right|+25\left|y+2\right|=65\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-37\left|y+2\right|=-37\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left|y+2\right|=1\\4\left|x-1\right|=13-5=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y+2\right|=1\\\left|x-1\right|=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1\in\left\{2;-2\right\}\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)

c: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-1\\y< >-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=3-4=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=2-9=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=-1+2\cdot\dfrac{19}{11}=\dfrac{27}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x=\dfrac{2}{9}\end{matrix}\right.\)(nhận)

d:

ĐKXĐ: x<>1 và y<>-2

\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}+\dfrac{3y+6-6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1+\dfrac{2}{x-1}+3-\dfrac{6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{x-1}-\dfrac{6}{y+2}=7-4=3\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{y+2}=-1\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=1\\\dfrac{2}{x-1}-5=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-1\\\dfrac{2}{x-1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-1=\dfrac{2}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=\dfrac{11}{9}\end{matrix}\right.\left(nhận\right)\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Đề bài là gì vậy bạn?

15 tháng 1 2024

\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{\left(2x-2\right)^2}+5\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2.2\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\\ \left|x-1\right|=a;\left|y+2\right|=b\\ \Rightarrow\left\{{}\begin{matrix}5a-3b=7\\4a+5b=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}25a-15b=35\\12a+15b=39\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}37a=74\\5a-3b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\5.2-3b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\\\left[{}\begin{matrix}y+2=1\\y+2=-1\end{matrix}\right.\end{matrix}\right.\\ \left\{{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=-1\\y=-3\end{matrix}\right.\end{matrix}\right.\)

15 tháng 1 2024

bạn thêm dấu \("\Leftrightarrow"\) ở cuối nhé

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi