Bài 2.Tìm x
a,5x+12=47
b,2(x-1)=7 +(-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow80x=480\Rightarrow x=6\)
b) \(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow4x=0\Rightarrow x=0\)
c) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
a) Ta có: 12-5x=37
\(\Leftrightarrow5x=-25\)
hay x=-5
Vậy: x=-5
b) Ta có: 7-3|x-2|=-11
\(\Leftrightarrow3\left|x-2\right|=18\)
\(\Leftrightarrow\left|x-2\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{8;-4\right\}\)
c) Ta có: \(x+\dfrac{2}{8}=-\dfrac{15}{4}\)
\(\Leftrightarrow x=\dfrac{-15}{4}-\dfrac{2}{8}=\dfrac{-15}{4}-\dfrac{1}{4}\)
hay x=-4
Vậy: x=-4
a, \(\Leftrightarrow5x=12-37=-25\)
\(\Leftrightarrow x=-\dfrac{25}{5}=-5\)
Vậy ...
b, \(\Leftrightarrow3\left|x-2\right|=7+11=18\)
\(\Leftrightarrow\left|x-2\right|=\dfrac{18}{3}=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-4\end{matrix}\right.\)
Vậy ...
c, \(\Leftrightarrow x=-\dfrac{15}{4}-\dfrac{2}{8}=-4\)
Vậy ..
a: =>x/27+1=-2/3
=>x/27=-5/3
=>x=-45
b: \(\Leftrightarrow x-4=\dfrac{2}{5}:\dfrac{20}{21}=\dfrac{2}{5}\cdot\dfrac{21}{20}=\dfrac{42}{100}=\dfrac{21}{50}\)
=>x=221/50
c: \(\Leftrightarrow x+\dfrac{2}{3}=\dfrac{4}{60}=\dfrac{1}{15}\)
=>x=1/15-2/3=1/15-10/15=-9/15=-3/5
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{15}{14}\cdot\dfrac{21}{20}\)
=>\(x\cdot\dfrac{3}{5}=\dfrac{1}{5}-\dfrac{3}{2}\cdot\dfrac{3}{4}=\dfrac{1}{5}-\dfrac{9}{8}=\dfrac{-37}{40}\)
=>x=-37/24
e: =>-3/7x=84/45
=>x=-196/45
f: =>11/10x=-2/3
=>x=-20/33
\(Bài.2:\\ a,7.3^x+15=78\\ \Leftrightarrow7.3^x=78-15=63\\ \Leftrightarrow3^x=\dfrac{63}{7}=9\\ Mà:3^2=9\\ Nên:3^x=3^2\\ Vậy:x=2\\ --\\ b,\left(3x-2\right)^3-11=53\\ \Rightarrow\left(3x-2\right)^3=53+11=64\\ Mà:4^3=64\\ Nên:\left(3x-2\right)^3=4^3\\ \Rightarrow3x-2=4\\ Vậy:3x=4+2=6\\ Vậy:x=\dfrac{6}{3}=2\)
Bài 1: D = 612 + 15 × 212 × 31112 × 611 + 7 × 84 × 274
Đầu tiên, chúng ta tính các phép tính trong ngoặc trước: D = 612 + 15 × 44944 × 66532 + 7 × 7056 × 274
Tiếp theo, chúng ta tính phép nhân: D = 612 + 672660 × 66532 + 153312 × 274
Sau đó, chúng ta tính các phép nhân tiếp theo: D = 612 + 44732282560 + 42060928
Cuối cùng, chúng ta tính phép cộng: D = 44732343100
Vậy kết quả là D = 44732343100.
Bài 2: a) 7 × 3x + 15 = 78
Đầu tiên, chúng ta giải phương trình này bằng cách trừ 15 từ hai vế: 7 × 3x = 63
Tiếp theo, chúng ta chia cả hai vế cho 7: 3x = 9
Cuối cùng, chúng ta chia cả hai vế cho 3: x = 3
Vậy giá trị của x là 3.
b) (3x - 2)3 - 11 = 53
Đầu tiên, chúng ta cộng 11 vào hai vế: (3x - 2)3 = 64
Tiếp theo, chúng ta lấy căn bậc ba của cả hai vế: 3x - 2 = 4
Cuối cùng, chúng ta cộng 2 vào hai vế: 3x = 6
Vậy giá trị của x là 2.
c) (x + 3)4 ≤ 80
Đầu tiên, chúng ta lấy căn bậc tư của cả hai vế: x + 3 ≤ 2
Tiếp theo, chúng ta trừ 3 từ hai vế: x ≤ -1
Vậy giá trị của x là -1 hoặc nhỏ hơn.
d) 7 × 5x + 1 - 3.5x + 1 = 860
Đầu tiên, chúng ta tính các phép tính trong ngoặc trước: 7 × 5x + 1 - 3.5x + 1 = 860
Tiếp theo, chúng ta tính các phép nhân: 35x + 1 - 3.5x + 1 = 860
Sau đó, chúng ta tính phép cộng và trừ: 31.5x + 2 = 860
Cuối cùng, chúng ta trừ 2 từ hai vế: 31.5x = 858
Vậy giá trị của x là 27.238 hoặc gần đúng là 27.24.
e) 2x + 24 = 5y
Đây là phương trình với hai ẩn x và y, không thể tìm ra một giá trị duy nhất cho x và y chỉ dựa trên một phương trình. Chúng ta cần thêm thông tin hoặc một phương trình khác để giải bài toán này.
`a)sqrt{1-4x+4x^2}+5=x-2`
`<=>\sqrt{(2x-1)^2}=x-2-5`
`<=>|2x-1|=x-7(x>=7)`
`<=>[(2x-1=x-7),(2x-1=7-x):}`
`<=>[(x=-6(ktm)),(3x=8):}`
`<=>x=8/3(ktm)`
Vậy PTVN
`b)3sqrt{12+4x}+4/7sqrt{147+49x}=3/2sqrt{48+16x}+4(x>=-3)`
`<=>6sqrt{x+3}+4sqrt{x+3}=6sqrt{x+3}+4`
`<=>4sqrt{x+3}=4`
`<=>sqrt{x+3}=1<=>x+3=1`
`<=>x=-2(tm)`
Vậy `S={-2}`
a) \(\sqrt{1-4x+4x^2}+5=x-2\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\Leftrightarrow\left|1-2x\right|=x-7\left(1\right)\)TH1: \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow1-2x=x-7\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)(không thỏa đk)
TH2: \(1-2x< 0\Leftrightarrow x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow2x-1=x-7\Leftrightarrow x=-6\)(không thỏa đk)
Vậy \(S=\varnothing\)
b) \(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}=6\sqrt{3+x}+4\Leftrightarrow4\sqrt{3+x}=4\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\)
a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)
\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)
b) \(\left(x+3\right)^2-5x-15=0\)
\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
c) \(2x^5-4x^3+2x=0\)
\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)
\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)
\(\Rightarrow2x\left(x^2-1\right)^2=0\)
\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(\text{#}Toru\)
a,5x+12=47
5x=47-12
5x=35
x=35:5
x=7
Vậy x=7
b,2(x-1)=7 +(-3)
2x-2=4
2x=4+2
2x=6
x=6:2
x=3
Vậy x=3
a) 5x+12=47
5x = 47-12
5x= 35
x= 35:5
x= 7
Vậy...
b) 2(x-1) = 7 + (-3)
2(x-1)= 4
x-1= 4:2
x-1=2
x= 2+1
x= 3
Vậy...