K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

giup minh lam nhanh nhanh len minh can gap ai la dung minh se k cho

18 tháng 2 2020

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}\)

\(\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\right)\)

\(\frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)

\(\frac{1}{2^2}.\left(2-\frac{1}{2005}\right)=\frac{1}{2}-\frac{1}{4\left(2005\right)}< \frac{1}{2}\)

Vậy \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}< \frac{1}{2}\)

2 tháng 1 2018

ta có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{7^2}< \frac{1}{6.7}\)

         \(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{7^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{6.7}\)

 mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}\)

      \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

        

2 tháng 1 2018

\(=1-\frac{1}{7}< 1\)ta có   A<B mà B<1  

suy ra A<1(đpcm)

23 tháng 3 2018

Ta thấy:

1/22<1/1*2; 1/3^2<1/2*3;...;1/2^11<1/10*11

=> tổng đó nhỏ hơn 1/1*2+1/2*3+...+1/10*11

= 1-1/2+1/2-1/3+...+1/10-1/11

=1-1/11<1

=> tổng đó nhỏ hơn 1

9 tháng 9 2020

\(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2014}}-\frac{1}{2^{2016}}\)

\(\Rightarrow2^2A=1-\frac{1}{2^2}+\frac{1}{2^4}-\frac{1}{2^6}+\frac{1}{2^8}-...+\frac{1}{2^{2012}}-\frac{1}{2^{2014}}\)

\(\Rightarrow2^2A+A=1+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{2014}}-\frac{1}{2^{2014}}\right)-\frac{1}{2^{2016}}\)

\(\Rightarrow5A=1-\frac{1}{2^{2016}}< 1\Rightarrow A< \frac{1}{5}=0,2\)

10 tháng 9 2020

đây là toán lớp 2 hả?

18 tháng 2 2020

ai lam day du dau tien minh se k cho nha

18 tháng 2 2020

minh can gap lam

8 tháng 9 2020

\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\right)\)

\(=1-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\right)>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)

\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(=1-\left(1-\frac{1}{2015}\right)=1-\frac{2014}{2015}=\frac{1}{2015}\)

=> \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}>\frac{1}{2015}\left(\text{đpcm}\right)\)