bài 18 : tính
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)
\(\Rightarrow A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow B=2-\frac{1}{2^{99}}\Rightarrow A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{100}}\)
\(2A-A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{24}\right)+....+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)\(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
\(=\left(1+\frac{2}{2^2}\right)+\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}\right)-\frac{101}{2^{100}}\)
Đặt B = \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}\)
\(2B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2B-B=\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+.....+\left(\frac{1}{2^{99}}-\frac{1}{2^{99}}\right)+\frac{1}{2}-\frac{1}{2^{100}}=\frac{1}{2}-\frac{1}{2^{100}}\)
\(A=\left(\frac{3}{2}-\frac{101}{2^{100}}\right)+B\)
\(A=\frac{3}{2}-\frac{101}{2^{100}}+\frac{1}{2}-\frac{1}{2^{100}}=\left(\frac{3}{2}+\frac{1}{2}\right)+\left(-\frac{101}{2^{100}}-\frac{1}{2^{100}}\right)\)
\(A=2+\left(-\frac{102}{2^{100}}\right)=2-\frac{102}{2^{100}}\)
Trang kool Thanh Nguyễn Vinh làm ra đi chtt ko có