1/ 11+11^2+11^3+...+11^100
2/ 5^5:5^3+81:(4^2-5)-30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{-6}{11}:\left(\dfrac{3}{5}.\dfrac{4}{11}\right)=\dfrac{-5}{2}\)
b)\(\dfrac{7}{12}+\dfrac{5}{12}:6-\dfrac{14}{30}=\dfrac{67}{370}\)
c)\(\left(\dfrac{4}{5}+\dfrac{1}{2}\right):\left(\dfrac{3}{13}-\dfrac{8}{13}\right)=-\dfrac{169}{50}\)
d)\(\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right):\left(\dfrac{5}{12}+1-\dfrac{7}{11}\right)=\dfrac{115}{103}\)
a) \(\frac{2}{3}-4.\left(\frac{1}{2}+\frac{3}{4}\right)\)
= \(\frac{2}{3}-4.\frac{5}{4}\)
= \(\frac{2}{3}-5\)
= \(-\frac{13}{3}\).
b) Câu này là 117 hay \(\frac{11}{7}\) vậy bạn?
Chúc bạn học tốt!
a: \(\left(-\dfrac{5}{6}+\dfrac{2}{5}\right):\dfrac{3}{8}+\left(\dfrac{4}{5}-\dfrac{11}{30}\right):\dfrac{3}{8}\)
\(=\left(-\dfrac{5}{6}+\dfrac{2}{5}\right)\cdot\dfrac{8}{3}+\left(\dfrac{4}{5}-\dfrac{11}{30}\right)\cdot\dfrac{8}{3}\)
\(=\dfrac{8}{3}\left(-\dfrac{5}{6}+\dfrac{2}{5}+\dfrac{4}{5}-\dfrac{11}{30}\right)\)
\(=\dfrac{8}{3}\cdot\dfrac{-25+36-11}{30}\)
=0
b: \(\left(-\dfrac{3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
\(=\left(-\dfrac{3}{4}+\dfrac{2}{5}\right)\cdot\dfrac{7}{3}+\left(\dfrac{3}{5}-\dfrac{1}{4}\right)\cdot\dfrac{7}{3}\)
\(=\dfrac{7}{3}\left(-\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{3}{5}-\dfrac{1}{4}\right)\)
\(=\dfrac{7}{3}\cdot0=0\)
c: \(\dfrac{-13}{18}\cdot\dfrac{5}{8}+\dfrac{-5}{18}\cdot\dfrac{2}{9}+\dfrac{-13}{18}\cdot\dfrac{3}{8}+\dfrac{-5}{18}\cdot\dfrac{7}{9}\)
\(=\left(-\dfrac{13}{18}\cdot\dfrac{5}{8}+\dfrac{-13}{18}\cdot\dfrac{3}{8}\right)+\left(-\dfrac{5}{18}\cdot\dfrac{2}{9}+\dfrac{-5}{18}\cdot\dfrac{7}{9}\right)\)
\(=-\dfrac{13}{18}\left(\dfrac{5}{8}+\dfrac{3}{8}\right)+\dfrac{-5}{18}\left(\dfrac{2}{9}+\dfrac{7}{9}\right)\)
\(=-\dfrac{13}{18}-\dfrac{5}{18}=-\dfrac{18}{18}=-1\)
d: Sửa đề: \(\dfrac{-11}{19}\cdot\dfrac{4}{9}+\dfrac{-8}{19}\cdot\dfrac{3}{7}+\dfrac{-11}{19}\cdot\dfrac{5}{9}+\dfrac{-8}{19}\cdot\dfrac{4}{7}\)
\(=\left(-\dfrac{11}{19}\cdot\dfrac{4}{9}+\dfrac{-11}{19}\cdot\dfrac{5}{9}\right)+\left(\dfrac{-8}{19}\cdot\dfrac{3}{7}+\dfrac{-8}{19}\cdot\dfrac{4}{7}\right)\)
\(=-\dfrac{11}{19}\left(\dfrac{4}{9}+\dfrac{5}{9}\right)+\dfrac{-8}{19}\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=-\dfrac{11}{19}-\dfrac{8}{19}=-\dfrac{19}{19}=-1\)
\(a.\left(-\dfrac{5}{6}+\dfrac{2}{5}\right):\dfrac{3}{8}+\left(\dfrac{4}{5}-\dfrac{11}{30}\right):\dfrac{3}{8}\)
\(=\left(-\dfrac{13}{30}\right):\dfrac{3}{8}+\dfrac{13}{30}:\dfrac{3}{8}\)
\(=\left[\left(-\dfrac{13}{30}+\dfrac{13}{30}\right)\right]:\dfrac{3}{8}\)
\(=0:\dfrac{3}{8}=0\)
\(b.\left(-\dfrac{3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+-\dfrac{1}{4}\right):\dfrac{3}{7}\)
\(=\left(-\dfrac{7}{20}\right):\dfrac{3}{7}+\dfrac{7}{20}:\dfrac{3}{7}\)
\(=\left[\left(-\dfrac{7}{20}+\dfrac{7}{20}\right)\right]:\dfrac{3}{7}=0:\dfrac{3}{7}=0\)
\(c.-\dfrac{13}{18}.\dfrac{5}{8}+-\dfrac{5}{18}.\dfrac{2}{9}+-\dfrac{13}{18}.\dfrac{3}{8}+-\dfrac{5}{18}.\dfrac{7}{9}\)
\(=\left(\dfrac{5}{8}+\dfrac{3}{8}\right).-\dfrac{13}{18}+\left(\dfrac{2}{9}+\dfrac{7}{9}\right).-\dfrac{5}{18}\)
\(=1.-\dfrac{13}{18}+1.-\dfrac{5}{18}=-\dfrac{13}{18}+-\dfrac{5}{18}=-1\)
\(d.-\dfrac{11}{19}.\dfrac{4}{9}+\dfrac{-8}{19}.\dfrac{3}{7}+-\dfrac{11}{19}.\dfrac{5}{9}+-\dfrac{9}{19}.\dfrac{4}{7}\)
\(=\left(\dfrac{4}{9}+\dfrac{5}{9}\right).-\dfrac{11}{19}+-\dfrac{24}{133}+-\dfrac{36}{133}\)
\(=-\dfrac{11}{19}+-\dfrac{60}{133}=-\dfrac{137}{133}\)
\(\left(-\dfrac{1}{2}\right)^2\div\dfrac{1}{4}-2\times\left(-\dfrac{1}{2}\right)^2\\= \dfrac{1}{4}\div\dfrac{1}{4}-2\times\dfrac{1}{4}\\ =1-\dfrac{1}{2}\\ =\dfrac{1}{2}\)
\(\left(-2\right)^3\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right)\div\dfrac{5}{12}\)
= \(-6\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-\dfrac{11}{6}\right)\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{1}{2}\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{6}{5}\)
= \(\dfrac{1}{4}-\dfrac{6}{5}\)
= \(-\dfrac{19}{20}\)
\(\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\\ =\dfrac{58}{9}+\dfrac{7}{11}-\dfrac{40}{9}+\dfrac{26}{11}\\ =\dfrac{58}{9}-\dfrac{40}{9}+\dfrac{7}{11}+\dfrac{26}{11}\\ =12+3\\ =15\)
\(a,\left(\dfrac{-1}{2}\right)^2:\dfrac{1}{4}-2\left(-\dfrac{1}{2}\right)^2\)
\(=\left(-\dfrac{1}{2}\right)^2\left(4-2\right)\)
\(=\dfrac{1}{4}.2=\dfrac{1}{2}\)
\(b,\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right):\dfrac{5}{12}\)
\(=\left(-8\right).\dfrac{-1}{24}+\left(-\dfrac{1}{2}\right).\dfrac{12}{5}\)
\(=\dfrac{1}{3}+\left(-\dfrac{1}{5}\right)=\dfrac{2}{15}\)
\(c,\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\)
\(=\dfrac{701}{99}-\dfrac{206}{99}=\dfrac{495}{99}=5\)
\(d,10\dfrac{1}{5}-5\dfrac{1}{2}.\dfrac{60}{11}+\dfrac{3}{15\%}\)
\(=\dfrac{51}{5}-30+20=\dfrac{1}{5}\)
\(e,\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}.\left(-\dfrac{7}{11}\right)\)
\(=-\dfrac{5}{11}\)
\(f,\dfrac{-5}{7}.\dfrac{2}{11}+\left(-\dfrac{5}{7}\right).\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\left(-\dfrac{5}{7}\right)\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\left(-\dfrac{5}{7}\right)+\dfrac{12}{7}=1\)
bài 3:
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{2021\cdot2022}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2021\cdot2022}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)\)
\(=9\cdot\dfrac{2021}{2022}=\dfrac{6063}{674}\)
Bài 1:
a: \(\left(\dfrac{1}{2}+\dfrac{16}{30}\right)-\left(1+\dfrac{1}{30}\right)\)
\(=\dfrac{15+16}{30}-1-\dfrac{1}{30}\)
\(=\dfrac{30}{30}-1\)
=1-1
=0
b: \(\dfrac{-5}{11}\cdot\dfrac{4}{13}+\dfrac{-5}{11}\cdot\dfrac{9}{13}+3\dfrac{5}{11}\)
\(=-\dfrac{5}{11}\left(\dfrac{4}{13}+\dfrac{9}{13}\right)+3+\dfrac{5}{11}\)
\(=-\dfrac{5}{11}+3+\dfrac{5}{11}\)
=3
c: \(3^2-12\left(\dfrac{3}{4}-\dfrac{2}{3}\right)\)
\(=9-12\cdot\dfrac{9-8}{12}\)
=9-1
=8
Số số hạng của dãy:(2010-7):1+1=2004(số)
Vậy có tất cả:2004:2=1002(cặp)
A=7-8+9-10+11-12+...+2009-2010
A=(7-8)+(9-10)+(11-12)+...+(2009-2010)
A=-1+(-1)+(-1)+...+(-1)
Vậy A=(-1)*1002=-1002
1: x=3/4-1/2=3/4-2/4=1/4
2: x-1/5=2/11
=>x=2/11+1/5=21/55
3: x-5/6=16/42-8/56
=>x-5/6=8/21-4/28=5/21
=>x=5/21+5/6=15/14
4: x/5=5/6-19/30
=>x/5=25/30-19/30=6/30=1/5
=>x=1
5: =>|x|=1/3+1/4=7/12
=>x=7/12 hoặc x=-7/12
6: x=-1/2+3/4
=>x=3/4-1/2=1/4
11: x-(-6/12)=9/48
=>x+1/2=3/16
=>x=3/16-1/2=-5/16
1)x= 1/4
2)x= 2/11+ 1/5
x= 21/55
3)x - 5/6 = 5/21
x = 5/21+5/6
x = 15/14
4)x/5 = 5/6 + -19/30
x:5 = 1/5
x = 1/5.5
x = 1
5) |x| - 1/4 = 6/18
|x| = 6/18 - 1/4
|x| =7/12
⇒x= 7/12 hoặc -7/12
6)x = -1/2 +3/4
x= 1/4
7) x/15 = 3/5 + -2/3
x:15 = -1/15
x = -1/15. 15
x = -1
8)11/8 + 13/6 = 85/x
85/24 = 85/x
⇒ x = 24
9) x - 7/8 = 13/12
x = 13/12 + 7/8
x = 47/24
10)x - -6/15 = 4/27
x = 4/27 + (-6/15)
x = -34/135
11) -(-6/12)+x = 9/48
x= 9/48 - 6/12
x = -5/16
12) x - 4/6 = 5/25 + -7/15
x -4/6 = -4/15
x = -4/15 + 4/6
x = 2/5
A=1+ 11+ 11^2+ ..... + 11^100
⇒11A=11+11^2+11^3+...+11^101
⇒11A-A=(11+11^2+11^3+...+11^101)-(1+ 11+ 11^2+ ..... + 11^100)
⇒10A=11^101-1
Ta có:
11^101=(11^4)25*11=....1^25*11=.....01*11=.....01( do số mũ chẵn)
Vậy 11^101 có tận cùng là 1 nên 11^101-1 có tận cùng là 0
⇒A=(11^101-1)/10 cũng có tận cùng là 0.(......00/10=.........0)
Vậy chữ số tận cùng của A là 0
1/Gọi tổng sau = S
S=11+11^2+11^3+...+11^100
11S=11^2+11^311^4+...+111^100+11^101
11S-S=(11^2+11^3+11^4+...+11^101) - (11+111^2+11^3+...+11^100)
10S= 11^101 -11
S=\(\frac{11^{101}-11}{10}\)