K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(3^{n+2}-2^{2n+4}+3^n+2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)\)

\(=3^n.10-2^n.15\)

\(=3^{n-1}.3.10-2^{n-1}.2.15\)

\(=3^{n-1}.30-2^{n-1}.30\)

\(=30\left(3^{n-1}-2^{n-1}\right)\)

Vì  \(30⋮30\Rightarrow30\left(3^{n-1}-2^{n-1}\right)⋮30\)

\(\Rightarrow3^{n+2}-2^{n+4}+3^n+2^n⋮30\)

\(\Rightarrowđpcm\)

16 tháng 2 2020

\(3^{n+2}-2^{n+4}+3^n+2^n\)

\(=3^n.3^2-2^n.2^4+3^n+2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)\)

\(=3^n.10-2^n.15\)

mà 3n.10 \(⋮\)3.10=30

2n.15\(⋮\)2.15=30

\(\Rightarrow3^n.10-2^n.15⋮30\)

hay 3n+2-2n+4+3n+2n\(⋮\)30

14 tháng 11 2017

Đề sai nhé bạn.

2n+1 không thể là ước của 3n+4 và đề cho là ucln của 3n+4 ???

Sửa đề r mình giải cho

15 tháng 11 2017

Ai bt Địa ko giải hộ mìk ạ chiều mình thi rồi T.T

Câu 1 : Hãy thử suy đoán xem nhiệt độ ngày đêm sẽ diễn biến ntn , nếu giả sử Trái đất : 

a) Quay chậm lại 24h thành 36h 

b) Quay nhanh hơn 24h thành 36h

c) Ngừng quay

Ai nhanh mik giúp mìh vs ạ ...

30 tháng 12 2022

\(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)=3^n.\left(9+1\right)-2^n.\left(16-1\right)=3^n.10-2^n.15=3^{n-1}.3.10-2^{n-1}.2.15=3^{n-1}.30-2^{n-1}.30=30.\left(3^{n-1}-2^{n-1}\right)\)

Vì \(30⋮30=>30.\left(3^{n-1}-2^{n-1}\right)⋮30=>3^{n+2}-2^{n+4}+3^n+2^n⋮30\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2023

Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.

15 tháng 11 2015

a)gọi UCLN(2n+5, 3n+7) là d 
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)

 

21 tháng 7 2023

\(=3^3.3^n+3.3^n+2^3.2^n+2^2.2^n=\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)=30.3^n+12.2^n=\)

\(=6\left(5.3^n+2.2^n\right)⋮6\)

21 tháng 7 2023

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(9+3\right)+2^{n+2}\left(8+4\right)\)

\(=12.3^{n+1}+12.2^{n+2}=12.\left(3^{n+1}+2^{n+2}\right)\)

mà 12⋮6

\(\Rightarrow12.\left(3^{n+1}+2^{n+2}\right)⋮6\Rightarrow dpcm\)