K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/815591.html

Bạn tham khảo

17 tháng 2 2020

mơn bạn nhìu!!!!!!!!!!!!!!!

22 tháng 2 2019

\(A=8\left(x-2\right)^4+8\ge8\)

23 tháng 2 2019

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

7 tháng 4 2016

A=[(x-1)(x+6)][(x+2)(x+3)]

=(x2+5x-6)(x2+5x+6)

=(x2+5x)2-36

Ta thấy (x2+5x)2  >=0 nên (x2+5x)2-36 >=-36

Vậy GTNN của A là -36

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

deo lm dc ns me di can may binh luan ak

NV
24 tháng 10 2019

\(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

\(A_{max}=6+\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\le0\\y\le0\\\left|x\right|+\left|y\right|=5\end{matrix}\right.\)

\(A\ge\left|x+y-\sqrt{2}-1\right|\ge4-\sqrt{2}\)

\(A_{min}=4-\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\ge\sqrt{2}\\y\ge1\\x+y=5\end{matrix}\right.\)

2/ \(A\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}\left(xy+yz+zx\right)^2=\frac{1}{3}\)

\(A_{min}=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)

24 tháng 10 2019

làm thế để có dòng đầu tiên ở câu a vậy ạ?

11 tháng 9 2017

Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .

=> x = 0 

I y + 4 I đạt giá trị nhỏ nhất khi y = -4

Vậy GTNN của biểu thức trên là 5 

 E đạt giá trị nhỏ nhất khi x = 1

y - 4 có giá trị nhỏ nhất là 0 nên y = -4

Vậy GTNN của biểu thức trên là 5

11 tháng 9 2017

Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)

Vậy MinE = 4 khi \(2\le x\le3\)

5 tháng 6 2019

Ta có : 

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)

\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)

\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)

\(A=8\left(x-2\right)^4+8\ge8\)

Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)

Đặt x-2=y

=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)

Khai triển A ta được 

\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)

\(=8y^4+8=8\left(y^4+1\right)\ge8\)

Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2

Vậy Amin=8 khi x=2