\(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)
\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)
Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:
\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)
=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)
a) ĐK: x > 1
\(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{9-\left(x-1\right)}\right):\left(\frac{3\sqrt{x-1}+1}{\left(x-1\right)-3\sqrt{x-1}}-\frac{1}{\sqrt{x-1}}\right)\)
\(P=\frac{\sqrt{x-1}\left(3-\sqrt{x-1}\right)+x+8}{9-\left(x-1\right)}:\frac{3\sqrt{x-1}+1-\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\sqrt{x-1}-x+1+x+8}{10-x}:\frac{2\sqrt{x-1}+4}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)
\(P=\frac{3\left(\sqrt{x-1}+3\right)}{10-x}.\frac{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}{2\sqrt{x-1}+4}\)
\(P=\frac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)
b) \(x=\sqrt[4]{\frac{17+12\sqrt{2}}{1}}-\sqrt[4]{\frac{17-12\sqrt{2}}{1}}=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
Vậy \(P=\frac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\frac{1}{2}\)
cô Hoàng Thị Thu Huyền làm rõ cho em ý b đc ko ạ chỗ biến đổi x
Xét BPT: \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\left(1\right)\)
ĐK: x<-1 và x>0
đặt \(t=\sqrt{\frac{x+1}{1}}\Rightarrow t^2=\frac{x+1}{x}\Rightarrow\frac{x}{x+1}=\frac{1}{t^2}\left(t>0\right)\)
vậy BPT (1) trở thành:
\(\frac{1}{t^2}-2t>3\Leftrightarrow2t^2+3t^2-1< 0\Leftrightarrow\left(t+1\right)^2\left(2t-1\right)< 0\)
\(\Leftrightarrow t< \frac{1}{2}\)so với điều kiện t>0 ta được \(0< t< \frac{1}{2}\)
Với 0<t<\(\frac{1}{2}\)có: \(0< \sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow0< \frac{x+1}{x}< \frac{1}{4}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x+1}{x}>0\\\frac{x+1}{x}-\frac{1}{4}< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+1}{x}>0\\\frac{3x+4}{4x}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1;x>0\\\frac{-4}{3}< x,0\end{cases}}}\)
\(\Leftrightarrow\frac{-4}{3}< x< 0\left(tmđk\right)\)