\(3^{x-3}+4.3^{x-2}=\frac{7}{729}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.
Lời giải:
$3^{x-1}+4.3^{x-2}=\frac{7}{243}$
$\Leftrightarrow 3. 3^{x-2}+4.3^{x-2}=\frac{7}{243}$
$\Leftrightarrow 3^{x-2}(3+4)=\frac{7}{243}$
$\Rightarrow 3^{x-2}=\frac{1}{243}=3^{-5}$
$\Rightarrow x-2=-5$
$\Rightarrow x=-3$
\(3^{x-1}+4.3^{x-2}=\frac{7}{243}\)
\(\Rightarrow3^1.3^{x-2}+4.3^{x-2}=\frac{7}{243}\)
\(\Rightarrow3^{x-2}.\left(3^1+4\right)=\frac{7}{243}\)
\(\Rightarrow3^{x-2}.7=\frac{7}{243}\)
\(\Rightarrow3^{x-2}=\frac{7}{243}:7\)
\(\Rightarrow3^{x-2}=\frac{1}{243}\)
\(\Rightarrow3^{x-2}=3^{-5}\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=\left(-5\right)+2\)
\(\Rightarrow x=-3\)
Vậy \(x=-3.\)
Chúc bạn học tốt!
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{20}{4}=5\)
\(\frac{x}{7}=5\Rightarrow x=35\)
\(\frac{y}{3}=5\Rightarrow y=15\)
tíc mình nha
3 bài à
1/ ta có x/7 = y/3 và x-y=20
ADTCDTSBN
x/7=y/3 = x-y/ 7-3 = 20/4= 5
Suy ra
x/7=5 => x=7.5= 35
y/3=5=> y= 3.5 = 15
Vậy x = 35 và y=15
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
\(\left(\frac{3^x}{3}\right)^2=\frac{1}{729}\Rightarrow3^{x-1}=\frac{1}{27}\Rightarrow x-1=-3\Rightarrow x=-2\)