Cho Δ ABC có góc BAC = 45o . Chứng minh rằng AB + AC < \(\frac{8}{3}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại sao mà nói AD là tia phân giác rồi mà còn CD > DB ????
Sửa đề: Góc ABD=góc AED
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: \(\widehat{ABD}=\widehat{AED}\)
a) Trong \(\Delta ABC\),do AB < AC(gt) nên \(\widehat{C}< \widehat{B}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)
\(\widehat{ADB},\widehat{ADC}\)theo thứ tự là góc ngoài tại đỉnh D của \(\Delta ADC,\Delta ADB\) ta có :
\(\hept{\begin{cases}\widehat{ADB}=\widehat{C}+\widehat{A_1}\left(1\right)\\\widehat{ADC}=\widehat{B}+\widehat{A_2}\left(2\right)\end{cases}}\)
Vì \(\widehat{C}< \widehat{B}\),còn \(\widehat{A_1}=\widehat{A_2}\)(gt) , do đó từ 1 và 2 => \(\widehat{ADB}< \widehat{ADC}\)
b) Do AB < AC(gt),trên cạnh AC lấy điểm E sao cho AE = AB
Xét \(\Delta ADB\) và \(\Delta ADE\)có :
AD chung
\(\widehat{DAB}=\widehat{DAE}\)
AB = AE(gt)
=> \(\Delta ADB=\Delta ADE\left(c.g.c\right)\)
Nên \(\widehat{AED}=\widehat{B}\) mà \(\widehat{AEB}+\widehat{DEC}=180^0\)(2 góc kề bù),do đó \(\widehat{B}+\widehat{DEC}=180^0\left(3\right)\)
Mặt khác \(\Delta ABC\)thì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\), do đó \(\widehat{B}+\widehat{C}< 180^0\left(4\right)\)
Từ 3 -> 4 ta có \(\widehat{DEC}>\widehat{C}\)
Trong \(\Delta DEC\)ta có DE < DC,nhưng DE = DB(cạnh tương ứng của hai tam giác bằng nhau : \(\Delta ADB=\Delta ADE\))
Vậy DB < DC hay DC > DB
a, Xét △ABD và △ACD có:
AB=AC(gt)AB=AC(gt)
Aˆ1=Aˆ2A^1=A^2 (vì AD là phân giác của ∠A)
AD chung
⇒ΔABD=ΔACD(c.g.c)⇒ΔABD=ΔACD(c.g.c)
Vậy ΔABD=ΔACD(đpcm)ΔABD=ΔACD(đpcm)
b, Vì △ABD=△ACD (chứng minh trên) nên ta có:
Bˆ=CˆB^=C^ (hai góc tương ứng)
Vậy Bˆ=Cˆ(đpcm)B^=C^(đpcm)
c, Vì △ABD=△ACD (chứng minh trên) nên ta có:
Dˆ1=Dˆ2D^1=D^2 (hai góc tương ứng)
Mà Dˆ1+Dˆ2=1800D^1+D^2=1800 (kề bù)
⇒Dˆ1=Dˆ2=18002=900⇒D^1=D^2=18002=900
Vậy AD⊥BC(đpcm)