So sánh : 2^30+3^30+4^30 và 324^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2^{20}+3^{30}+4^{30}=4^{10}+9^{10}+64^{10}<64^{10}+64^{10}+64^{10}=3.64^{10}\)
\(324^{10}>320^{10}=\left(5.64\right)^{10}=5^{10}.64^{10}>3.64^{10}\)
\(\Rightarrow2^{20}+3^{30}+4^{30}<324^{10}\)

4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
Ta có: 4^30=2^30.2^30=2^30.4^15
3.24^10=3.(3.2^3)^10=2^30.3^11
Ta thấy: 3^11<3^15<4^15 => 4^15>3^11
Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11
=>2^30+3^30+4^30>3.24^10


\(3\times24^{10}\)
\(=3\times\left(2^3\times3\right)^{10}\)
\(=3\times3^{10}\times\left(2^3\right)^{10}\)
\(=3^{11}\times2^{30}\)
\(=3^{11}\times\left(2^2\right)^{15}\)
\(=3^{11}\times4^{15}\)
Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)
Nên \(3^{11}\times4^{15}\)< \(4^{15}\times4^{15}=4^{30}\)
Do đó : \(3\times24^{10}\)< \(4^{30}\)
Vậy \(2^{30}+3^{30}+4^{30}\)> \(3\times24^{10}\)

4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10

4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10



9920 = 992.10 = (992)10 = 980110 < 999910 ( vì 9801 < 9999 ) nên 9920<999910.
317>316 = 32.8 = (32)8 = 98
232 = 24.8 = (24)8 = 168
168 > 98 ( vì 16>9 ) nên 317<232
Ta có : 3.24^10=3.(3.2^3)^10=3^11.2^30=3^11.4^15<4^15.4^15=4^30
⇒2^30+3^30+4^30>3.24^10