K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

11 tháng 12 2018

Sửa lại đề: \(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\)

12 tháng 12 2018

\(M=\frac{1}{\left(x-1\right)\left(2-x\right)}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(2-x\right)^2}\ge3\sqrt[3]{\frac{1}{\left(x-1\right)^3\left(2-x\right)^3}}=\frac{3}{\left(x-1\right)\left(2-x\right)}\)

\(=\frac{-3}{x^2-3x+2}=\frac{-3}{\left(x^2-3x+\frac{9}{4}\right)-\frac{1}{4}}=\frac{-3}{\left(x-\frac{3}{2}\right)^2-\frac{1}{4}}\ge\frac{-3}{-\frac{1}{4}}=12\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(2-x\right)^2}\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow x=\frac{3}{2}}\)

... 

NV
20 tháng 4 2019

\(P=\frac{1}{\left(x-2\right)^2}+\frac{1}{\left(3-x\right)^2}+\frac{1}{\left(x-2\right)\left(3-x\right)}\)

\(P\ge\frac{2}{\left(x-2\right)\left(3-x\right)}+\frac{1}{\left(x-2\right)\left(3-x\right)}=\frac{3}{\left(x-2\right)\left(3-x\right)}\)

\(P\ge\frac{3}{\frac{\left(x-2+3-x\right)^2}{4}}=12\)

\(\Rightarrow P_{min}=12\) khi \(x-2=3-x\Rightarrow x=\frac{5}{2}\)

20 tháng 4 2019

\(\frac{1}{\left(x-2\right)^2}+\frac{1}{\left(x-3\right)^2}\ge\frac{2}{\left(x-2\right)\left(x-3\right)}\)

Bất đẳng thức nào vậy bạn ??

23 tháng 4 2016

b)

\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(x-2=8\)

=> x = 10

23 tháng 4 2016

a) 

\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)

\(A=\frac{1}{2016}\)

28 tháng 5 2017

dễ anh học lớp 11 rùi

tích anh anh giải cho

28 tháng 5 2017

the mình, ta nên đặt x-1=a , 2-x=b sao cho a,b>0, ta đc a+b=1 thì biểu thức S có dạng:

S= 1/a2+ 1/b2 + 1/ab = (1/a2 + 1/b2 - 2/ab) + 3/ab =(1/a - 1/b)2 + 3/ab.

Ta có (a+b)2 >= 4ab nên thay a+b=1 vào ta được 1>= 4ab 

suy ra 1/ab >= 4 suy ra tiếp 3/ab >=12  

mà (1/a - 1/b)2 >=0 nên S >= 12 

dấu bằng sảy ra khi a=b=1/2 nên x=3/2

3 tháng 9 2019

e, Để 5/x <1 thì x<5

3 tháng 9 2019

\(-2x< 7\Leftrightarrow x>-3,5\) 

\(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow x^2-3x+2>0\Leftrightarrow x^2-3x+\frac{9}{4}>\frac{1}{4}\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2>\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}>\frac{1}{2}\\x-\frac{3}{2}< -\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)