Cho biểu thức: A= 2t2(m - 1) - t(m - 1)(2t - 1) + t +m.
a) Rút gọn A.
b) Khi m=2, tìm t để A=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2t^2\left(m-1\right)-t\left(m-1\right)\left(2t-1\right)+t+m\)
\(A=2t^2m-2t^2-2t^2m+tm+2t^2-t+t+m\)
\(A=tm+m\)
b) Ta có:
\(t.2+2=0\)
\(\Leftrightarrow2t+2=0\)
\(\Leftrightarrow2t=-2\)
\(\Leftrightarrow t=-1\)
vậy: phương trình có tập nghiệm là: S = {-1}
t không chắc :v
\(=2t^2m-2t^2-t\left(2tm-m-2t+1\right)+t+m\)
\(=2t^2m-2t^2-2t^2m+tm+2t^2-t+t+m\)
=tm+m
a) Rut gon H
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)
Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)
Bài 3:
\(3x^2+2x-1=0\)
\(\Leftrightarrow x^2+\dfrac{2}{3}x-\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^2-\dfrac{4}{9}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
Vậy...
Bài 1 :
a/ ĐKXĐ : \(a\ne0;-1\)
Ta có :
\(M=\left(\frac{1}{a}+\frac{a}{a+1}\right)-\frac{a}{a^2+a}\)
\(=\left(\frac{a+1}{a\left(a+1\right)}-\frac{a^2}{a\left(a+1\right)}\right)-\frac{a}{a\left(a+1\right)}\)
\(=\frac{a-a^2+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}\)
\(=\frac{1-a^2}{a\left(a+1\right)}\)
\(=\frac{\left(1-a\right)\left(1+a\right)}{a\left(a+1\right)}\)
\(=\frac{1-a}{a}\)
Vậy....
c/ Ta có : \(a+1=0\Leftrightarrow a=-1\) (loại)
Vậy....
Bài 2 :
a/ ĐKXĐ : \(x\ne0;3;-3\)
Ta có :
\(A=\left(\frac{x^2-3}{x^2-9}+\frac{1}{x-3}\right):\frac{x}{x-3}\)
\(=\left(\frac{x^2-3}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}\right).\frac{x-3}{x}\)
\(=\frac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{x}\)
\(=\frac{x^2+x}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{x}\)
\(=\frac{x\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{x}\)
\(=\frac{x+1}{x+3}\)
Vậy....
b/ \(A=3\)
\(\Leftrightarrow\frac{x+1}{x+3}=3\)
\(\Leftrightarrow x+1=3x+9\)
\(\Leftrightarrow2x=-8\Leftrightarrow x=-4\)
Vậy...
a) A = [2t2(m - 1) - t(m - 1)(2t - 1)] + t + m
A = t(m - 1)[2t - (2t - 1)] + t + m
A = t(m - 1) + t + m
A = tm + m
b) Với m = 2; A = 0 thì ta được pt:
0 = 2t + 2
⇔ t = -1
Vậy khi m = 2 và để A = 0 thì t = -1