Trong các điểm tọa độ sau đây điểm nào thuộc miền nghiệm của phương trình 1/2x+3/2y>=1,x+1/2y<=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay tọa độ các điểm vào từng bất phương trình ta thấy, điểm (-1 ; 1) thỏa mãn cả hai bất phương trình : - 1 + 3 . 1 - 2 ≥ 0 ; 2 . - 1 + 1 + 1 ≤ 0
Do đó, điểm (-1; 1) thuộc miền nghiệm của bất phương trình đã cho.
Chọn B
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay tọa độ các điểm vào từng bất phương trình ta thấy, điểm (-1 ; 1) thỏa mãn cả hai bất phương trình :
-1 + 3.1 - 2 ≥ 0; 2.(-1) + 1 + 1 ≤ 0
Do đó, điểm (-1; 1) thuộc miền nghiệm của bất phương trình đã cho.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1: Cặp số là nghiệm phương của 2x + 3y = 7 là:
C. ( 2;1 )
Câu 2: Phương trình x + 2y = 3, Cặp số là nghiệm phương của phương trình đã cho là cặp số : ( 1;1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay tọa độ điểm (0;0) vào ta được: \(\left\{ \begin{array}{l}0 - 0 < - 3\left( {ktm} \right)\\2.0 \ge - 4\left( {tm} \right)\end{array} \right.\)
=> Loại A
Thay tọa độ điểm (-2;1) vào ta được: \(\left\{ \begin{array}{l} - 2 - 1 < - 3\left( {ktm} \right)\\2.1 \ge - 4\left( {tm} \right)\end{array} \right.\)
=> Loại B.
Thay tọa độ điểm (3;-1) vào ta được: \(\left\{ \begin{array}{l}3 - \left( { - 1} \right) < - 3\left( {ktm} \right)\\2.\left( { - 1} \right) \ge - 4\left( {tm} \right)\end{array} \right.\)
Loại C
Thay tọa độ điểm (-3;1) vào ta được: \(\left\{ \begin{array}{l} - 3 - 1 < - 3\left( {tm} \right)\\2.1 \ge - 4\left( {tm} \right)\end{array} \right.\)
Chọn D.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo:
a) Vẽ đường thẳng \(\Delta : - 2x + y - 1 = 0\) đi qua hai điểm \(A(0;1)\) và \(B\left( { - 1; - 1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 - 1 = - 1 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
b) Vẽ đường thẳng \(\Delta : - x + 2y = 0\) đi qua hai điểm \(O(0;0)\) và \(B\left( {2;1} \right)\)
Xét điểm \(A(1;0).\) Ta thấy \(A \notin \Delta \) và \( - 1 + 2.0 = - 1 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), không chứa điểm A (1;0)
(miền không gạch chéo trên hình)
c) Vẽ đường thẳng \(\Delta :x - 5y = 2\) đi qua hai điểm \(A(2;0)\) và \(B\left( { - 3; - 1} \right)\)
Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 - 5.0 = 0 < 2\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O
(miền không gạch chéo trên hình)
d) Vẽ đường thẳng \(\Delta : - 3x + y + 2 = 0\) đi qua hai điểm \(A(0; - 2)\) và \(B\left( {1;1} \right)\)
Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 3.0 + 0 + 2 = 2 > 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), không chứa điểm O (0;0)
(miền không gạch chéo trên hình)
e) Ta có: \(3(x - 1) + 4(y - 2) < 5x - 3 \Leftrightarrow - 2x + 4y - 8 < 0 \Leftrightarrow - x + 2y - 4 < 0\)
Vẽ đường thẳng \(\Delta : - x + 2y -4 = 0\) đi qua hai điểm \(A(0;2)\) và \(B\left( {-4;0} \right)\)
Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 0 + 2.0 -4 = -4 < 0\)
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa điểm O (0;0)
(miền không gạch chéo trên hình)
![](https://rs.olm.vn/images/avt/0.png?1311)
- Vẽ đường thẳng x + 2y = 4.
+ Với x = 0 ⇒ y = 2. Đường thẳng đi qua điểm (0; 2).
+ Với y = 0 ⇒ x = 4. Đường thẳng đi qua điểm (4; 0).
Đường x + 2y = 4 là đường thẳng đi qua điểm (0; 2) và (4; 0).
- Vẽ đường thẳng x – y = 1
+ Với x = 0 ⇒ y = -1. Đường thẳng đi qua điểm (0; -1).
+ Với y = 0 ⇒ x = 1. Đường thẳng đi qua điểm (1; 0).
Đường x – y = 1 là đường thẳng đi qua điểm (0 ; -1) và (1 ; 0).
- Giao điểm của hai đường thẳng là điểm A có tọa độ là (2; 1).
- Ta có A(2; 1) cùng thuộc hai đường thẳng nên nó là nghiệm của cả hai phương trình đã cho.
![](https://rs.olm.vn/images/avt/0.png?1311)
- Vẽ đường thẳng x + 2y = 4.
+ Với x = 0 ⇒ y = 2. Đường thẳng đi qua điểm (0; 2).
+ Với y = 0 ⇒ x = 4. Đường thẳng đi qua điểm (4; 0).
Đường x + 2y = 4 là đường thẳng đi qua điểm (0; 2) và (4; 0).
- Vẽ đường thẳng x – y = 1
+ Với x = 0 ⇒ y = -1. Đường thẳng đi qua điểm (0; -1).
+ Với y = 0 ⇒ x = 1. Đường thẳng đi qua điểm (1; 0).
Đường x – y = 1 là đường thẳng đi qua điểm (0 ; -1) và (1 ; 0).
- Giao điểm của hai đường thẳng là điểm A có tọa độ là (2; 1).
- Ta có A(2; 1) cùng thuộc hai đường thẳng nên nó là nghiệm của cả hai phương trình đã cho.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\dfrac{x-2y}{2}>\dfrac{2x+y+1}{3}\)
\(\Leftrightarrow3x-6y>4x+2y+1\)
\(\Leftrightarrow x+8y+1< 0\)