Cho tam giác IAB có IA =IB M là trung điểm AB
a) IM vuông góc với AB giúp
=) giúp nốt ik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg IMA và tg IMB có \(IA=IB;AM=MB;IM chung\) nên \(\Delta IMA=\Delta IMB\left(c.c.c\right)\)
Do đó \(\widehat{AIM}=\widehat{BIM}\)
Do đó IM là p/g góc AIB
a: Xét ΔIAB và ΔIKC có
IA=IK
góc AIB=góc KIC
IB=IC
=>ΔIAB=ΔIKC
b: ΔIAB=ΔIKC
=>góc IAB=góc IKC
=>AB//KC
=>KC vuông góc AC
c: Xét tứ giác ABKC có
I là trung điểm chung của AK và BC
=>ABKC là hfinh bình hành
=>BK//AC
b: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
a) Xét ΔIAB và ΔICD có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔIAB=ΔICD(c-g-c)
b) Ta có: ΔIAB=ΔICD(cmt)
nên AB=CD(hai cạnh tương ứng)
mà AB<BC(gt)
nên CD<BC
Xét ΔBCD có CD<BC(cmt)
mà góc đối diện với cạnh CD là góc DBC
và góc đối diện với cạnh BC là góc BDC
nên \(\widehat{DBC}< \widehat{BDC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{IDC}>\widehat{IBC}\)
mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIAB=ΔICD)
nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)
a: Ta có: ΔIAB cân tại I
mà IM là đường trung tuyến ứng với cạnh đáy AB
nên IM là đường cao ứng với cạnh AB