Cho (O;R) và dây cung BC cố định (BC<2R).Điểm A di động trên đường tròn sao cho tam giác ABC nhọn,Gọi AD là đường cao của tam giác ABC và H là trực tâm tam giác ABC
a)Đường thẳng chứa tia phân giác góc ngoài góc BHC cắt AB,AC lần lượt tại M,N.Chưng minh tam giác AMN cân
b)Gọi E,F lần lượt là hình chiếu của D trên BH,CH.Chứng minh OA vuông goác với EF
c)Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác góc trong của goác BAC tại K.Chứng minh rằng đường thẳng HK luôn đi qua 1 điểm cố định
A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.