Cho đường thẳng y=2mx+3-m-x. Xác định m để dường thẳng song song với 2y-x=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Để ĐT đã cho song song với trục hoành thì:
\(\left\{\begin{matrix} m^2-25=0\\ m+5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-5)(m+5)=0\\ m+5\neq 0\end{matrix}\right.\)
\(\Rightarrow m=5\)
b) Để ĐT đã cho song song với đường thẳng $y=5$ thì:
\(\left\{\begin{matrix} m^2-25=0\\ m+5\neq 5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-5)(m+5)=0\\ m\neq 0\end{matrix}\right.\Rightarrow m=\pm 5\)
y = 2mx + 3 - m - x = (2m-1)x + 3 - m (d)
đk: m ≠ 1/2
a/ Để (d) đi qua gốc tọa độ thì:
3 - m = 0 <=> m = 3 (t/m)
b/ Để (d) // đường thẳng 2y -x = 5
<=> (d) // \(y=\dfrac{1}{2}x+2,5\)
thì: \(\left\{{}\begin{matrix}2m-1=\dfrac{1}{2}\\3-m\ne2,5\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{4}\)
c/ Để d tạo với Ox 1 góc nhọn thì hệ số góc > 0 tức là: 2m - 1> 0 <=> m > 1/2
Để 2 đường thẳng d và d' song song với nhau thì
\(\left\{{}\begin{matrix}m^2-3m+5=m+2\\m-1\ne5-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3=0\\2m\ne6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m-3\right)=0\\m\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=1\left(tm\right)\)
\(1,\\ a,A\left(2;1\right)\in\left(d_m\right)\Leftrightarrow\dfrac{-2\left(m-1\right)+m+1}{2m-3}=1\\ \Leftrightarrow-2m+2+m+1=2m-3\\ \Leftrightarrow3m=6\Leftrightarrow m=2\\ b,\Leftrightarrow-\dfrac{m-1}{2m-3}>0\Leftrightarrow\dfrac{m-1}{2m-3}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1>0\\2m-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-1< 0\\2m-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< m< \dfrac{3}{2}\\ c,\left(\Delta\right):x-2y-12=0\Leftrightarrow2y=x-12\Leftrightarrow y=\dfrac{1}{2}x-6\\ \left(d_m\right)\text{//}\left(\Delta\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-m}{2m-3}=\dfrac{1}{2}\\\dfrac{m+1}{2m-3}\ne-6\end{matrix}\right.\Leftrightarrow m=\dfrac{5}{4}\)
\(2,\text{Gọi }M\left(x_0;y_0\right)\text{ là điểm cần tìm}\\ \Leftrightarrow y_0=\dfrac{1-m}{2m-3}x_0+\dfrac{m+1}{2m-3}\\ \Leftrightarrow y_0\left(2m-3\right)=x_0\left(1-m\right)+m+1\\ \Leftrightarrow x_0-mx_0+m+1-2my_0-3y_0=0\\ \Leftrightarrow m\left(1-x_0-2y_0\right)+\left(x_0-3y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+2y_0=1\\x_0-3y_0=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{5}\\y_0=\dfrac{2}{5}\end{matrix}\right.\\ \Leftrightarrow M\left(\dfrac{1}{5};\dfrac{2}{5}\right)\)
\(a,\Leftrightarrow x=0;y=0\Leftrightarrow3-m=0\Leftrightarrow m=3\\ b,\text{PT hoành độ giao điểm: }3mx-x+3-m=2x-3\\ \text{Thay }x=2\Leftrightarrow6m-m+1=1\Leftrightarrow m=0\\ c,y=4;x=0\Leftrightarrow3-m=4\Leftrightarrow m=-1\\ d,2y-x=5\Leftrightarrow y=\dfrac{1}{2}x+\dfrac{5}{2}\\ \left(d\right):y=x\left(2m-1\right)+3-m\text{//}y=\dfrac{1}{2}x+\dfrac{5}{2}\\ \Leftrightarrow\left\{{}\begin{matrix}2m-1=\dfrac{1}{2}\\3-m\ne\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\m\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{4}\)
\(f,\Leftrightarrow2m-1>0\Leftrightarrow m>\dfrac{1}{2}\\ g,\Leftrightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\)