tìm GTNN của bt \(\frac{x^2-2x+2016}{x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)
Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)
\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)
Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1
2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :
\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)
Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)
Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016
Ta có: \(\frac{x^2-2x+2016}{x^2}=1-\frac{2}{x}+\frac{2016}{x^2}=2016.\left(\frac{1}{x^2}-\frac{2}{2016.x}+\frac{1}{2016}\right)=2016.\left(\frac{1}{x^2}-2.\frac{1}{2016}.\frac{1}{x}+\frac{1}{2016^2}\right)+\frac{2015}{2016}=2016.\left(\frac{1}{x}-\frac{1}{2016}\right)^2+\frac{2015}{2016}\ge0\forall x\)
Dấu "=" xảy ra khi \(\frac{1}{x}-\frac{1}{2016}=0=>x=2016\)
Vậy min B=\(\frac{2015}{2016}\)<=> x=2016
Ta có:
\(x^2\ge0\) với mọi x
\(-2x^2\ge0\) với mọi x
\(-2x^2-\frac{1}{5}\ge-\frac{1}{5}\) với mọi x
Vậy GTNN của biểu thức trên là -1/5 khi x = 0
đặt t=x+y
x^2 +2xy+6x+6y+2y^2+8=0
x^2+2xy+y^2+6(x+y)+8= -y^2
(x+y)^2 + 6(x+y)+8 = -y^2
t^2 +6t +8= -y^2
(t+2)(t+4) = -y^2
do y^2 >=0 với mọi y
-y^2 <=0 với mọi y
t^2+6t+8<=0
(t+2)(t+4)<=0
* Trường hợp 1: t+2<=0 và t+4>=0 (1)
t<=-2 và t>=4
* trường hợp 2: t+2>=0 và t+4<=0 (2)
t>= -2 và t<= -4 ( vô nghiệm)
Từ (1), (2) ta có:
-4<= t <=-2
-4 <= x+y <= -2
-4 + 2016 <= x+y+ 2016 <= -2 +2016
2012 <= x+y +2016 <= 2014
Bmin= 2012
Bmax= 2014
*Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0
thì x=-4 và y=0
* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0
thì x=-2 và y=0
vậy Bmin= 2012 khi (x,y) = (-4, 0)
Bmax= 2014 khi (x,y)= (-2,0)
Đặt \(x-1=t\Rightarrow x=t+1\)
\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)
Ta có: \(P=\frac{x^2+2x+2016}{x^2}=\frac{x^2+2x+1}{x^2}+\) \(\frac{2015}{x^2}\)
Vì \(\frac{2015}{x^2}>0\) (vì \(x^2>0\))\(\Rightarrow\) Để P có GTNN \(\Rightarrow\frac{\left(x+1\right)^2}{x^2}\)có GTNN
Mà \(\left(x+1\right)^2\ge0\) và \(x^2\ge0\Rightarrow\frac{\left(x+1\right)^2}{x^2}\ge0\)
Dấu ' = ' xảy ra khi \(\frac{\left(x+1\right)^2}{x^2}=0\Rightarrow\left(x+1\right)^2=0\Rightarrow x+1=0\) \(\Rightarrow x=-1\)
=> P có GTNN là \(\frac{2015}{\left(-1\right)^2}=2015\) khi x = -1
Vậy GTNN của P là 2015 khi x = -1
Đặt \(A=\)\(\frac{x^2-2x+2016}{x^2}\)(ĐKXĐ: x≠0)
\(\Leftrightarrow x^2\left(A-1\right)+2x-2016=0\)
△ = \(2^2+4.2016\left(A-1\right)\ge0\)
\(\Leftrightarrow8064A\ge8060\Leftrightarrow A\ge\frac{2015}{2016}\)
Vậy min A = \(\frac{2015}{2016}\Leftrightarrow\)\(x=2016\)