K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

xét A = n^3 + 2018n

A = n^3 + 2019n - n

A = n(n^2 - 1) + 2019n

A = n(n-1)(n+1)

có (n-1)n(n+1) chia hết cho 3 

  2019 chia hết cho 3 => 2019n chia hết cho 3

=> A chia hết cho 3                                                  (1)

xét B = 2020^2019 + 4

2020 chia 3 dư 1 => 2020^2019 chia 3 dư 1

4 chia 3 dư 1

=> B chia 3 dư 2               (2)

đển n^3 + 2018n = 2020^2019               + 4              (3)

(1)(2)(3) => n thuộc tập hợp rỗng

12 tháng 3 2021

Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).

Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).

Từ đó suy ra không tồn tại n thoả mãn đề bài.

 

17 tháng 2 2017

Đáp án C

24 tháng 2 2020

Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)

Lại có : \(2020\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)

Và : \(4\equiv1\left(mod3\right)\)

Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)

hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)

Do đó, không tồn tại số nguyên n thỏa mãn đề.

\(\Leftrightarrow n^3+n^2-n^2-n-2n-2+6⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

16 tháng 4 2019

có click ko

22 tháng 4 2018

Nếu n= 0 thì không thỏa mản.

Nếu 1 ≤ n ≤2017 thì

S(n)=n^2 - 2018n +11 <  n2 - 2018n +2017

Mà n2 - 2018n +2017 =(n-1)(n-2017)≤ 0 (loại)

Nếu n=2018 thì S(n) = 11,thỏa mãn.

Nếu n > 2018 thì

n-2018 ≥ 1 ⟹n2 - 2018n ≥ n

⟹ n2 - 2018n +11>n2 - 2018n

⟹S(n) > n (loại).Vậy n=2018