Tim x :\(\left(x^2-1\right)\left(x^2+4x+3\right)=192.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x=46+9+25=80\)
\(\Leftrightarrow x=2\)
b) \(\left(x+1\right)^3+2x-\left(x-1\right)^3-3\left[\left(x+1\right)^2+\left(x-1\right)^2\right]+5=0\)
\(=x^3+3x^2+3x+1+2x-x^3+3x^2-3x+1-3\left(x^2+2x+1+x^2-2x+1\right)+5=0\)
\(=6x^2+2x+2-3\left(2x^2+2\right)+5=0\)
\(\Leftrightarrow6x^2+2x+2-6x^2-6+5=0\)
\(\Leftrightarrow2x=-2+6-5=-1\)
\(\Leftrightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
( x2 - 1 ).( x2 + 4x + 3 ) = 192
\(\Leftrightarrow\) ( x - 1 ).( x + 1 ) .( x2 + 3x + x + 3 ) = 192
\(\Leftrightarrow\) ( x - 1 ).( x + 1 ).[ x.( x + 3 )+ ( x + 3 ) ] = 192
\(\Leftrightarrow\) ( x - 1 .( x + 1 ).( x + 1 ).( x + 3 ) -192 = 0
\(\Leftrightarrow\) ( x + 1 )2.( x - 1 ).( x +3 ) - 192 = 0
Đặt : x + 1 = a
Khi đó phương trình trở thành :
\(\Rightarrow\) a2.( a - 2 ).( a + 2 ) - 192 = 0
\(\Leftrightarrow\)a2.( a2 - 4 ) - 192 = 0
\(\Leftrightarrow\) a4 - 4a2 - 192 = 0
\(\Leftrightarrow\) ( a4 - 4a2 + 4 ) - 4 - 192 = 0
\(\Leftrightarrow\) ( a2 - 2 )2 - 196 = 0
\(\Leftrightarrow\)( a2 - 2 )2 - 142 = 0
\(\Leftrightarrow\)( a2 - 2 - 14 ).( a2 - 2 + 14 ) = 0
\(\Leftrightarrow\)( a2 - 16 ).( a2 + 12 ) = 0
\(\Leftrightarrow\) ( a - 4 ).( a + 4 ).( a2 + 12 ) = 0
\(\Leftrightarrow\) \(\orbr{\begin{cases}\left(a-4\right).\left(a+4\right)=0\\a^2+12=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(a-4\right).\left(a+4\right)=0\\a^2=-12\left(vl\right)\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-4=0\\a+4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=4\\a=-4\end{cases}}\)
Với a = 4 Với a = -4
\(\Rightarrow\) x + 1 = 4 \(\Rightarrow\) x + 1 = -4
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = -5
Vậy phương trình có nghiệm là x = 3 , x = -5
![](https://rs.olm.vn/images/avt/0.png?1311)
(x² - 1)(x² + 4x + 3) = 192
<=> (x - 1)(x + 1)(x + 1)(x + 3) = 192
<=> (x - 1)(x + 3)(x + 1)² = 192
<=> (x² + 2x - 3)(x² + 2x + 1) = 192
Đặt t = x² + 2x + 1 => x² + 2x - 3 = t - 4
ta có pt: (t - 4)t = 192
<=> t² - 4t - 192 = 0
<=> t = - 12 hoặc t = 16
*t = x² + 2x + 1 = -12: vn
*t = x² + 2x + 1 = 16
<=> (x+1)² = 16
<=> x = -5 hoặc x = 3
Mãi mãi có một tương lai tươi sáng
![](https://rs.olm.vn/images/avt/0.png?1311)
a)(x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1-3x2)=54
\(\Rightarrow\)x3+9x2+27x+27-x(9x2+6x+1)+(2x+1)(x2-2x+1)=54
\(\Rightarrow\)x3+9x2+27x+27-9x3-6x2-x+2x3-4x2+2x+x2-2x+1=54
\(\Rightarrow\)-6x3+26x+28=54
\(\Rightarrow\)-6x3+26x=54-28
\(\Rightarrow\)-6x3+26x=26
\(\Rightarrow\)-6x3+26x-26=0
\(\Rightarrow\)-2(3x3+13x+14)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x-3\right)\left(x+3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
\(\Leftrightarrow8x+76=36\)
\(\Leftrightarrow8x=-40\)
\(\Leftrightarrow x=-5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(192-\left(x^2-1\right)\left(x^2+4x+3\right)=0\)
\(\Leftrightarrow192-\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow192-\left[\left(x-1\right)\left(x+3\right)\right]\left[\left(x+1\right)\left(x+1\right)\right]=0\)
\(\Leftrightarrow192-\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)
Đặt \(x^2+2x-3=a\)
\(pt\Leftrightarrow192-a\left(a+4\right)=0\)
\(\Leftrightarrow192-a^2-4a=0\)
\(\Leftrightarrow-a^2-16a+12a+192=0\)
\(\Leftrightarrow-a\left(a+16\right)+12\left(a+16\right)=0\)
\(\Leftrightarrow\left(a+16\right)\left(-a+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-16\\a=12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x-3=-16\\x^2+2x-3=12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x+13=0\\x^2+2x-15=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x+1+12=0\\x^2+5x-3x-15=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^2=-12\\x\left(x+5\right)-3\left(x+5\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\\left(x+5\right)\left(x-3\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy.....
X=3
bạn nhé
Ta có: (x2 - 1)(x2 + 4x + 3) = 192
<=> (x - 1)(x + 1)(x2 + 3x + x + 3) - 192 = 0
<=> (x - 1)(x + 1)(x + 1)(x + 3) - 192 = 0
<=> [(x - 1)(x + 3)](x + 1)2 - 192 = 0
<=> (x2 + 2x - 3)(x2 + 2x + 1) - 192 = 0
Đặt : x2 + 2x - 3 = y
<=> y(y + 4) - 192 = 0
<=> y2 + 4y - 192 = 0
<=> y2 + 16y - 12y - 192 = 0
<=> y(y + 16) - 12(y + 16) = 0
<=> (y - 12)(y + 16) = 0
<=> \(\orbr{\begin{cases}y-12=0\\y+16=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+2x-3-12=0\\x^2+2x-3+16=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+2x-15=0\\x^2+2x+13=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+5x-3x-15=0\\\left(x^2+2x+1\right)+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+5\right)\left(x-3\right)=0\\\left(x+1\right)^2+12=0\left(ktm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy ...