cho hình thoi abcd có canh ab dài 10cm;ac=12cm kẻ ah vuông góc bc.
a,tính diện tích hình thoi
b,tính ah
b,gọi i là trung điểm cd,e là điểm đối xứng a qua i. chứng minh rằng bd vuông góc de và tính diện tích tam giác bde
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(S_{ABCD}=\dfrac{1}{2}.AC.BD\Rightarrow BD=\dfrac{2S_{ABCD}}{AC}=\dfrac{2.50\sqrt[]{3}}{10}=10\sqrt[]{3}\left(cm\right)\)
Gọi O là giao điểm AC và BD
\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{1}{2}AC=5\left(cm\right)\\OB=\dfrac{1}{2}BD=5\sqrt[]{3}\left(cm\right)\end{matrix}\right.\)
Xét Δ vuông OAB có :
\(AB^2=OA^2+OC^2=25+25.3=100\left(cm^2\right)\left(Pitago\right)\)
\(\Rightarrow AB=10\left(cm\right)\)
2) Xét Δ vuông OAB có :
\(AB=2OA=10\left(cm\right)\)
⇒ Δ OAB là Δ nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABD}=30^o\\\widehat{BAC}=60^o\end{matrix}\right.\)
mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2\widehat{BAC}\\\widehat{ADC}=\widehat{ABC}=2\widehat{ABD}\end{matrix}\right.\) (tính chất hình thoi)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2.60=120^o\\\widehat{ADC}=\widehat{ABC}=2.30=60^o\end{matrix}\right.\)
Kẻ BH vuông góc AD
Tam giác ABH là tam giác đều nên BH=AD=10(cm)
Suy ra SABCD=10.10=100(cm2)
Gọi H là giao điểm của hai đường chéo AC,BD.
⇒ HA = HC = 5( cm )
Áp dụng định lí Py – to – go ta có:
A B C D I
Vì : ABCD là hình thoi
\(\Rightarrow IA=IC=\frac{AC}{2}=\frac{12}{2}=6\)
Xét \(\Delta ABI\) vuông tại I
\(\Rightarrow AB^2=AI^2+BI^2\)
\(\Rightarrow BI^2=AB^2-AI^2=10^2-6^2=64\)
\(\Rightarrow BI=8\)
\(\Rightarrow BD=2.BI=2.8=16\)
Diện tích hình thoi ABCD là :
\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.12.16=96\)
Chúc bạn học tốt !!!
Lời giải
a) Tính diện tích hình thang BHDA
Do E là điểm chính giữa cạnh AB nên EA = AB/2 = 5cm.
Do H là điểm chính giữa cạnh BC nên BH = BC/2 = 5cm.
Do đó, đáy lớn của hình thang BHDA là BH + AD = 5 + 10 = 15cm.
Do hình thang BHDA là hình thang cân có đáy lớn bằng đáy bé nên diện tích của hình thang BHDA là:
S = 1/2 * (15 + 15) * 10 = 112.5cm^2b) Tính diện tích tam giác AHE và diện tích tam giác AHD
Do E là điểm chính giữa cạnh AB nên AE = AB/2 = 5cm.
Do H là điểm chính giữa cạnh BC nên BH = BC/2 = 5cm.
Do đó, diện tích tam giác AHE là:
S = 1/2 * AE * BH = 1/2 * 5 * 5 = 12.5cm^2Tương tự, diện tích tam giác AHD là 12.5cm^2.
Kết luận