tìm số nguyên n bt
a, 3 chia hết cho n+5
b, n chia hết cho13 và -14<n<27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Số chia cho 5 dư 1 thì tận cùng là 1 hoặc 6 nên số cần tìm có thể là 11 hoặc 66. Số cần tìm chia hết cho 3 nên số cần tìm là 66
b/ Câu b đề ra ít điều kiện nên quá rộng sẽ có nhiều đáp số
Số chia hết cho 2 và 5 thì tận cùng =0 (chữ số hàng đơn vị =0)
Số chia hết cho 132 khi đồng thời chia hết cho 3;4;11
Để số cần tìm chia hết cho 4 thì chữ số hàng chục = {0;2;4;6;8;}
Các chữ số còn lại phải đảm bảo tổng các chữ số chia hết cho 3 và tổng các chữ số ở vị trí chẵn - tổng các chữ số ở vị trí lẻ hoặc ngược lại đảm bảo chia hết cho 11
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
a,n+5 chia hết choa n-2
=>n-2+7 chia hết cho n-2
Mà n-2 chia hết cho n-2
=>7 chia hết cho n-2
=>n-2\(\in\)Ư(7)={-7,-1,1,7}
=>n\(\in\){-5,1,3,9}
b,2n+1 chia hết cho n-5
=>2n-10+11 chia hết cho n-5
=>2(n-5)+11 chia hết cho n-5
Mà 2(n-5) chia hết cho n-5
=>11 chia hết cho n-5
=>n-5\(\in\)Ư(11)={-11,-1,1,11}
=>n\(\in\){-6,4,6,16}
3n+5 chia hết cho n+1
=>3n+3+2 chia hết cho n+1
=>3(n+1)+2 chia hết cho n+1
Mà 3(n+1) chia hết cho n+1
=>2 chia hết cho n+1
=>n+1\(\in\)Ư(2)={-2,-1,1,2}
=>n\(\in\){-3,-2,0,1}
a,\(3⋮\left(n+5\right)\)
\(=>n+5\inƯ\left(3\right)\)
\(=>n+5\in\left\{3;1;-1;-3\right\}\)
\(=>n\in\left\{-2;-4;-6;-8\right\}\)
b,\(n⋮13=>B\left(13\right)=n\)
Do \(-14< n< 27\)
\(=>n\in\left\{-13;0;13;26\right\}\)
cảm ơn