K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2020

ta có

5/6 = 5(6 + n)/6(6+n)=5.6 + 5n/6(6+n)=30 + 5n/6(6+n)

5+n/6+n=6(5+ n)/6(6+n)=6.5 + 6n/6(6+n)=30+6n/6(6+n)

vì 6n > 5n

nên 30 + 5n< 30+6n

vì 30 + 6n > 30+ 5n

nên 30 + 6n/ 6(6+6n)>6n/6(6+n)

vì 30 + 6n/ 6(6+6n)>30 + 5n/6(6+n)

nên 6(5+ n)/6(6+n)> 5(6 + n)/6(6+n)

vì  6(5+ n)/6(6+n)> 5(6 + n)/6(6+n)

nên 5/6 > 5+n/6+n

1 tháng 2 2020

Ta có : \(\frac{5}{6}=\frac{5\left(6+n\right)}{6\left(6+n\right)}=\frac{30+5n}{36+6n}\)

            \(\frac{5+n}{6+n}=\frac{6\left(6+n\right)}{6\left(6+n\right)}=\frac{36+6n}{36+6n}\)

Vì 30+5n<36+6n nên \(\frac{30+5n}{36+6n}< \frac{36+6n}{36+6n}\)

hay \(\frac{5}{6}< \frac{5+n}{6+n}\)

Vậy \(\frac{5}{6}< \frac{5+n}{6+n}\).

2 tháng 1 2018

madara and obito

18:

a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)

=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)

=3*49/100=147/100

b: Để A là số nguyên thì n-1 thuộc Ư(2)

=>n-1 thuộc {1;-1;2;-2}

=>n thuộc {2;0;3;-1}

21 tháng 6 2015

theo minh thi

neu a<b thi ta co a(b+n) va b(a+n)

       ab+an và ab + bn

vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n

neu a>b thi ta co a(b+n) va b(a+n)

      ab+an va ab+bn

vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n

neu a=b thi a(b+n) và b(a+n)

       ab+an và ab+ bn

vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n

19 tháng 6 2015

a bé hơn b

a+n<b+n
 

 

Ta có : \(\frac{n}{n+6}\)=\(1-\frac{6}{n+6}\)

           \(\frac{n+1}{n+7}\)=\(1-\frac{6}{n+7}\)

Vì \(\frac{6}{n+6}>\frac{6}{n+7}\)=> \(\frac{n}{n+6}< \frac{n+1}{n+7}\)Vì phần cần thêm vào càng lớn thì phần có sẵn càng nhỏ 

ủng hộ mik nhaaa

8 tháng 7 2017

Ta có:

\(1-\frac{n}{n+6}=\frac{n+6}{n+6}-\frac{n}{n+6}=\frac{6}{n+6}.\)

\(1-\frac{n+1}{n+7}=\frac{n+7}{n+7}-\frac{n+1}{n+7}=\frac{6}{n+7}.\)

Vì \(n+6< n+7\)nên \(\frac{6}{n+6}>\frac{6}{n+7}\Leftrightarrow1-\frac{6}{n+6}< 1-\frac{6}{n+7}\Leftrightarrow\frac{n}{n+6}< \frac{n+1}{n+7}\)

k với!!!!!!!!!!!!

10 tháng 1 2016

Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{\left(2m-2\right)}{2}+1\right]}{2}}{m}\)=\(\frac{\left(m+1\right).m}{m}=m+1\)

B=\(\frac{\frac{\left(2n+2\right)\left[\frac{\left(2n-2\right)}{2}+2\right]}{2}}{m}=\frac{\left(n+1\right).n}{n}=n+1\)

Mà A>B  =>m+1>n+1

Mà m, n thuộc Z+

=>m>n 

7 tháng 2 2018

a) \(P=\frac{3n+5}{6n}=\frac{n+2}{6n}+\frac{2n+3}{6n}\)

b) \(P=\frac{3n}{6n}+\frac{5}{6n}=\frac{3}{6}+\frac{5}{6n}\)=> để P lớn nhất 6n phải bé nhất => n = 1

\(GTLN.P=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)